RESEARCH ARTICLE

an International Research Journal on Advanced Science Hub
E 3

5 2582-4376
i) www.rspsciencehub.com

h

Vol. 07, Issue 11 November
W) Check for updates

RSP Science Hub http://dx.doi.org/10.47392/IRJASH.2025.115

Review Paper On: Array Manipulation Techniques

Dr. Shivaprasad B J!, Nitish kumar P2, Gavin Neel Dmello®, Dhruv D Mallya?, Krishnamurthy K S°
ISenior Assistant Professor, Dept. of CSD, Alvas Institute of Engg. & Tech, Mijar, Karnataka.

2345UG — Computer Science and Design Engineering, Alvas Institute of Engineering and Technology, Mijar,
Karnataka.

Emails: drshivaprasad@aiet.org.in®, nitishpben1364@gmail.com?,
dhruvmallya2006 @gmail.com*, krishnamurthy38952@gmail.com®

gavin.neel.dmello@gmail.com?,

Abstract

This review presents a systematic analysis of four fundamental array
manipulation techniques— traversal, searching, two-pointer approach, and
sliding window paradigm—that are critical for developing efficient
algorithms. We examine linear and specialized traversal methods, compare
brute-force and binary search algorithms, and analyse two-pointer variations
(same-direction and opposite-end) for optimization problems. The sliding
window technique is explored for both fixed and dynamic window scenarios
in subarray problems. Beyond theoretical foundations, this work synthesizes
practical insights, performance trade-offs, and implementation challenges,
bridging the gap between algorithmic principles and real-world applications.
By providing a structured framework for selecting and optimizing array-
based solutions, this review serves as an essential resource for researchers
and practitioners advancing algorithm design.

Article history

Received: 17 September 2025
Accepted: 09 October 2025
Published:25 November 2025

Keywords:

Event detection;
Robustness; Statistical
analysis; Correlators;
Process design; Error
correction; Transmitters;
Statistics; Telephony.

1. Introduction

” An array is a type of data structure that stores a e Two Pointer.

group of values or variables. Each item in the array e Sliding Window.

can be accessed using a number called an index, 2. Traversal and lteration

which is usually calculated while the program is Traversal is the process of systematically visiting

running. This collection of items is often just called
an "array."” Array manipulation refers to the
process of changing, accessing, or working with the
elements inside an array. This can include a wide

variety of operations, depending on the
programming language you're using. Array
manipulation is essential for working with

collections of data efficiently. Whether you're
building apps, analyzing data, or solving coding
problems, you’ll often rely on arrays [1].
Useful manipulation techniques in array:

e Traversal and Iteration.

e Searching.

OPEN ACCESS

each element in a data structure exactly once, much
like reading every page in a book from start to finish.
Iteration, on the other hand, refers to the actual tools
or techniques—such as loops—that make this
traversal possible. When working with arrays, you
can't access or manipulate their data without either
traversing through each element or directly
referencing an index. Traversal serves as the
foundation for any array operation, and because
arrays store their elements in contiguous
(sequential) memory blocks, moving through them
is straightforward using simple indexing. To help
visualize and apply traversal effectively, we’ve

1045

Array Manipulation Techniques
organized it into five key categories to grasp both
the concept and its practical implementation [2].

2.1. Linear Traversal
Linear traversal is the simplest way to work through
every item in an array, one by one, from start to
finish. Since arrays store their elements in sequential
memory blocks, this method is both fast and
straightforward—you can jump directly to any
element without unnecessary steps. Whether you're
searching, modifying, or just reading the data, linear
traversal gives you a clean and efficient way to
handle everything in order.

Code snippet: for (int i=0; i<n-1; i--)
{

//Process Array

}

2.2. Reverse Traversal
Reverse traversal works through arrays from end to
beginning, proving especially valuable when
operations like element removal could disrupt
remaining items' positions if processed sequentially.
This backward approach maintains efficiency while
avoiding the index-shifting problems that often
occur with forward iteration during modifications.
Code snippet:
for (inti=n-1; i>=0; i--)

{
//Process Array
}

2.3. Condition Based Traversal
Condition-based traversal offers a smarter way to
process arrays by only handling elements that match
certain criteria, rather than scanning every single
item. Whether moving forward or backward, this
targeted approach boosts efficiency by skipping
irrelevant data and concentrating computational
effort where it matters most.

Code Snippet:

for (int i=0; i<n; i++)
{

if(condition)

{

/IProcess Array

}

}

2.4. Iterator Based Traversal
Iterator-based traversal uses a specialized iterator
object to navigate arrays be it forward or backward
or condition based, replacing basic index counters
with a more versatile approach. This standardized
method not only simplifies element access but also

2025, Vol. 07, Issue 11 November
maintains consistency with traversal patterns used
across different data structures.

Code Snippet:
for (auto it = array, begin (); it! =array.end ();
it++)
{
//Process Array
/[*it (dereferencing it)

}

2.5. Range Based Traversal
Range-based for loops streamline array traversal
by automatically handling indexing, eliminating
the need for manual counter management
Code Snippet:
For (auto element: array)

{
/IProcess Array
}
3. Searching Technique in Array

Searching is one of the most fundamental
operations in computer science, especially in the
context of arrays. Efficient search techniques can
significantly impact the performance of
applications ranging from databases to real-time
systems [3]
Introduction:
Arrays are a widely used data structure in
programming due to their simplicity and efficiency
in accessing elements. Searching in arrays refers to
finding the presence (and optionally, the position)
of a target element. The choice of search algorithm
depends on various factors such as data size, data
order, and performance requirements.
Classification of Search Algorithms

3.1. Linear Search
Linear Search (also called Sequential Search) is a
simple method of finding a target element in an
array by checking each element from the
beginning to the end until the target is found or the
list ends Shown in Figure 1.

Linear Search

Array

2| 5|8 (12|16 | 23|38 |56

|

key
Figure 1 Linear Search

International Research Journal on Advanced Science Hub (IRJASH) 1046

Dr. Shivaprasad B J et al

Syntax:
linearSearch(array, target)

for each element in array

if element == target
return the index of element

end for

return -1// return -1 if target is not found
Advantages of Linear Search

e Super simple — very easy to understand and
implement.

e Works on unsorted data — no need to sort
the array before searching.

e Can be applied anywhere — works with
arrays, linked lists, or any other structure.

e Great for small datasets — quick enough
when the data size is small.

e Flexible — can handle both numbers and
non-numerical data (like strings) [4].

Disadvantages of Linear Search

e Slow for large datasets — since it checks
every element one by one (O(n)).

e Less efficient than other searches — binary
or jump search are much faster on sorted
data.

e Not scalable — performance gets worse as
the dataset grows.

e Doesn’t use sorted data effectively — even
if the array is sorted, it still checks each
element.

3.2. Binary Search

Binary search is a quick way to find where a specific
value is located in a sorted list. It does this by
repeatedly cutting the search area in half until it
finds the value or determines it’s not there Shown in
Figure 2.

Binary Search

Array

2 5| 8 (12|16 | 23 | 38 | 56

|]

low mid high
Figure 2 Binary Search

Syntax:
Binary Search (array, target)
low — 0

2025, Vol. 07, Issue 11 November

high < length of array — 1
while low < high

mid < (low + high) // 2 // integer division
if array[mid] == target
return mid

else if array[mid] < target
low «— mid + 1

else

high < mid - 1

end while

return -1 // target not found
Advantages of Binary Search

e Much faster than Linear Search —
only O (log n) steps instead of O(n).

e Great for large datasets — quickly cuts
down the search space by half each time.

e [Easy to implement — the logic is simple and
straightforward.

e Reliable performance - consistently
reduces the problem size in every step.

e Low memory usage — only a few variables
like low, high, and mid are needed.

Disadvantages of Binary Search

e Works only on sorted data — you can’t use
it directly on unsorted arrays.

e Extra cost of sorting — if the array isn’t
sorted, sorting it first can take O (n log n)
time.

e Not ideal for linked lists — because you
can’t directly access the middle element.

e Recursive version can use extra memory
— recursion adds stack overhead.

e Not always best for small datasets —
sometimes a simple linear search is faster.

4, Two Pointer Technique in Array

The Two-Pointer technique is a fundamental
algorithmic pattern used for efficiently traversing
and manipulating arrays. At its core, it involves
using two pointers (or iterators) that reference
elements in the array simultaneously. This method
is primarily used to solve problems that require
comparing, swapping, or manipulating elements
from different parts of the array in a single pass. Its
significance lies in its ability to reduce time
complexity from a brute-force O(N2) to a more
optimal O(N), making it an essential tool for array-
based problem-solving. While the basic concept is
simple, the technique has several key variations that
will be explored in this review. We will examine
converging pointers, where two pointers start at

it takes

International Research Journal on Advanced Science Hub (IRJASH) 1047

Array Manipulation Techniques
opposite ends and move toward each other; parallel
pointers, where two pointers move in the same
direction; and trigger-based pointers, which use a
condition to control the movement of one or both
pointers [5].

4.1. Converging Two Pointers
Converging pointers is a specific two-pointer
technique where the pointers start at opposite ends
of a data structure and move towards each other
until they meet. This method is exceptionally useful
for solving problems that involve searching for a
pair, triplet, or any combination of elements that
satisfy a condition. It is a highly efficient way to
reduce the search space, as each step eliminates a
portion of the array from consideration, leading to a
significant optimization from an O(N2) brute-force
approach to a more optimal O(N) linear time
complexity. This is particularly effective in sorted
arrays, where the ordered nature of the data allows
for intelligent pointer movement. We will explore
how this technique is applied to classical problems
like finding a target sum or checking for
palindromes, and how its efficiency is a direct result
of its ability to eliminate large parts of the search
space with each comparison Shown in Figure 3.

left right

Figure 3 Converging Two Pointers

4.2. Parallel Two Pointer
Parallel two pointers is a technique that uses two
pointers that start at the same location and move in
the same direction, typically at different speeds or
based on different conditions. This method is
exceptionally effective for problems that involve
maintaining a dynamic window or a sub-array
within a larger array. By moving the pointers in
tandem, the algorithm can efficiently track and
manipulate sections of the array without the need
for nested loops, which can lead to a significant
performance improvement from an O(N2) to an
optimal O(N) time complexity. Its key
applications include solving problems related to

2025, Vol. 07, Issue 11 November
finding the longest or shortest sub-array that
satisfies a given condition, and manipulating
elements within a single pass. We will explore how
this technique is applied to problems like finding a
sub-array with a given sum, and how the pointer’s
coordinated movement simplifies complex sub-
array analysis Shown in Figure 4.

_——

Figure 4 Array Traversal Showing Current
Index Pointers

4.3. Trigger Based Two Pointer
Trigger-based pointers represent a highly
adaptable two-pointer technique where the
movement of one or both pointers is dictated by a
specific condition or "trigger.” Unlike converging
or parallel pointers with their predefined
movement patterns, this method's pointers
advance only when a certain criterion is met,
which allows for a more dynamic and nuanced
approach to array traversal. The primary value of
this technique lies in its ability to solve complex
optimization problems, often those involving
finding a sub-array or sub-sequence that satisfies a
series of constraints. Its significance is its ability
to reduce the time complexity of a problem from a
nested loop O(N2) to an efficient O(N) linear scan.
We will explore how this technique is applied in
problems like finding the length of the longest
substring without repeating characters, where one
pointer advances only when a duplicate is found,
and how this conditional movement provides a
flexible and powerful tool for solving intricate
array-based problems [6]. Trigger-based pointers
represent a highly adaptable two-pointer technique
where the movement of one or both pointers is
dictated by a specific condition or “trigger."
Unlike converging or parallel pointers with their
predefined movement patterns, this method's
pointers advance only when a certain criterion is
met, which allows for a more dynamic and
nuanced approach to array traversal. The primary
value of this technique lies in its ability to solve

International Research Journal on Advanced Science Hub (IRJASH) 1048

Dr. Shivaprasad B J et al

complex optimization problems, often those
involving finding a sub-array or sub-sequence that
satisfies a series of constraints. Its significance is
its ability to reduce the time complexity of a
problem from a nested loop O (N 2) to an efficient
O(N) linear scan [7]. We will explore how this
technique is applied in problems like finding the
length of the longest substring without repeating
characters, where one pointer advances only when
a duplicate is found, and how this conditional
movement provides a flexible and powerful tool
for solving intricate array-based problems Shown
in Figure 5.

Figure 5 Step-by-Step Movement of Low and
High Indices

Building on the two-pointer technique, the Sliding
Window is a particularly popular and powerful
variation. It uses two pointers to define a dynamic
sub-array or "window" that moves through the data,
making it exceptionally efficient for solving
problems that require analyzing a contiguous sub-
segment. The next section will delve into the
mechanics and applications of this technique in
detail.

5. Sliding Window Technique in Array

The sliding window is an algorithmic technique
used to process a subset (or "window") of data
within a larger dataset, usually an array or string.
Instead of recalculating values for every possible
subarray, the window "slides" across the dataset,
reusing previous computations to improve
efficiency Shown in Figure 6.

Figure 6 Sliding Window Highlighted Over
Array Elements

2025, Vol. 07, Issue 11 November

Reason for existence- It exists to avoid repetitive
calculations when dealing with problems involving
subarrays, substrings, or sequences. Without
sliding window, we would often use nested loops
to recompute values from scratch for each window,
which is inefficient. The sliding window method
reduces this redundancy [8].
Problem solving- Sliding window solves problems
where we need to analyze continuous segments of
data, such as finding the maximum sum of a
subarray of fixed size, the longest substring
without repeating characters, or the minimum
window containing all required elements. It
optimizes performance in these repetitive range-
based problems.
Variations- There are mainly two types:
e Fixed-size sliding window — where the
window size is constant (e.g., maximum
sum of k consecutive elements) Shown in

Figure 7.
I - = | =2 || s
rmax = 3
f= 2 !
max =S
s [=]
max = 8
' =]

max = 8
3. S. 8. 8)

Figure 7 Sliding Window Maximum
Computation Steps

e Variable-size (or dynamic) sliding
window — where the window expands or
contracts based on Shown in Figure 8.

513-‘q16-\9—7'k911o'|
i it | 1 1
Cl=l=T=T=T=T=T=
Gl=T=l-T<I=T-T=
- s l=]=lw

(2] = -

|\; 21 = 1‘

Figure 8 Visualization of All Possible Subarrays

International Research Journal on Advanced Science Hub (IRJASH) 1049

Array Manipulation Techniques

Conditions (e.g., finding the smallest substring that

contains all given characters) [9].

Advantages

It is helpful when the problem involves continuous

subarrays or substrings where results depend only

on the "current segment” of data. This is common in

problems like substring matching,

maximum/minimum sum subarrays, frequency

counting in ranges, or streaming data analysis.

Disadvantages

Sliding window is not suitable when the problem

requires working with non-contiguous elements,

when the subarray conditions cannot be maintained

incrementally, or when each window requires

independent, non-overlapping calculations (e.g.,

subset problems, combinatorial problems).

Time and space complexity of sliding window in

array manipulation

Typically, sliding window reduces the naive O (n x

k) complexity (for subarray of size k) to O (n),

because each element is processed at most twice

(entering and leaving the window). The space

complexity is usually O (1) for fixed-size windows,

but can go up to O (n) in variable-size windows if

extra data structures (like hash maps or sets) are

used.

References

[1]. S. M. Pan and D. H. Madill, "Generalized

sliding window algorithm with applications
to frame synchronization," Proceedings of
MILCOM '96 IEEE Military
Communications Conference, McLean, VA,
USA, 1996, pp. 796-800 vol.3, doi:
10.1109/MILCOM.1996.571384.

[2]. https://www.researchgate.net/publication/2
21612605 A _Sliding_Window_Algorithm
_for_Relational_Frequent_Patterns_Mining
_from_Data_Streams.

[3]. https://www.researchgate.net/publication/3
12766314 Arrays_and_Array_Manipulatio
n

[4]. https://millenia.cars.aps.anl.gov/xraylarch/t
utorial/arrays.html

[5]. https://www.researchgate.net/publication/3
72759158 Arrays

[6]. 1a5c42895091dc71e0adc4277997a6ac3458
pdf

[7]. 2406.16729v1.pdf

[8]. Introduction_to_Complexity Theory Big_
O_Algorithm_Analysis.pdf

International Research Journal on Advanced Science Hub (IRJASH)

[9].

2025, Vol. 07, Issue 11 November
Programming_Fundamentals_Arrays.pdf

1050

