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Abstract

Cloud computing has emerged as a rapidly maturing paradigm that delivers
software applications and hardware infrastructure as services through
Service Level Agreements (SLASs). A critical challenge in this environment is
the efficient scheduling of interdependent tasks across virtual machines
(VMs) while minimizing resource consumption and meeting Quality of
Service (QoS) requirements. This paper proposes a Hybrid Optimization
Workflow Scheduling (HOWS) algorithm that integrates Bees Mating
Optimization (BMO) for global resource exploration and Bacterial
Evolutionary Algorithm (BEA) for adaptive local refinement. The hybrid
framework improves workflow scheduling by ensuring balanced task
allocation, optimal VM utilization, enhanced energy efficiency, and system
scalability. Simulation experiments conducted in CloudSim demonstrate that
the proposed model significantly outperforms traditional scheduling
algorithms such as Round Robin and Shortest Job Next in terms of makespan
reduction, workload balancing, and overall throughput. The results establish
HOWS as an effective and secure scheduling strategy, contributing to
improved resource management and robust performance in dynamic cloud
environments. Future directions include
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1. Introduction
Cloud computing has transformed distributed
computing by providing on-demand access to

which must be scheduled effectively across virtual
machines (VMs) to optimize resource utilization

computational resources, thereby reducing the need
for costly hardware and software investments. It
offers a scalable and adaptable environment that
enables users to deploy applications and execute
tasks  efficiently while  maintaining  cost-
effectiveness [1]. These applications typically
consist of interdependent tasks forming workflows,

OPEN ACCESS

and ensure Quality of Service (QoS) as defined in
Service Level Agreements (SLAS)[2]. This research
presents a cloud-based hybrid optimization
approach for workflow scheduling (HOWS). The
algorithm combines BEA and BMO [3]. The
suggested method improves resource allocation and
work scheduling, improving cloud computing. The
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Optimal Workflow Scheduling in Cloud Computing
BMO component ensures effective scheduling by
sharing physical infrastructure across various
service providers. Additionally, the BEA
component improves network resource use for
better job scheduling by enabling flexible access [4].
Workflow scheduling in cloud computing is a
complex, NP-hard problem due to the dynamic and
heterogeneous nature of cloud environments.
Efficient scheduling algorithms must
simultaneously minimize execution time, cost, and
resource consumption while balancing workloads
across VMs. Traditional scheduling methods, such
as FIFO, Round Robin (RR), Shortest Job Next
(SIN), Particle Swarm Optimization (PSO), and Ant
Colony Optimization (ACO), demonstrate limited
adaptability and often fail to optimize multiple QoS
parameters in large-scale dynamic systems. Cloud
computing provides a comprehensive paradigm that
facilitates the sharing of a reservoir of configurable
computational resources, such as storage, networks,
and applications [5]. To address these limitations,
this research presents a Hybrid Optimization
Workflow Scheduling (HOWS) algorithm that
integrates Bees Mating Optimization (BMO) and
the Bacterial Evolutionary Algorithm (BEA). The
BMO component enhances global task-to-resource
mapping through efficient infrastructure sharing
among multiple service providers, while BEA
improves local resource utilization and network
performance via adaptive refinement [5]. By
combining these strategies, the hybrid model
achieves improved load balancing, reduced
makespan, and enhanced scalability [6]. The
dependency relationships are generally tough with
parent-child relationships among tasks to which are
shown in the workflow DAG in Figure 1.
Traditional scheduling techniques are bounded with
respect to scalability, cost optimization, and task
execution time [7].
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Figure 1 Workflow Applications DAG [8]
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The aim of the present work is to develop a
composite optimization algorithm that combines the
merits of the BEA and Bees Mating Optimization
(BMO) [9]. The improvement of BMO increases
resource-sharing capabilities by permitting several
service providers to achieve any scheduling
optimization. This algorithm optimally assigns best-
fit resources for the task, thereby reducing
computational overhead and being inspired by
natural mating behavior of bees [10] Shown in
Figure 2.
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Figure 2 Workflow Scheduling Framework in
Cloud Computing

The figure illustrates the proposed workflow
scheduling framework in a cloud computing
environment. At the top, cloud users submit diverse
workflows consisting of multiple interdependent
tasks (V1, V2, V3 ... Vn). These workflows are
passed to the scheduling framework, where tasks are
mapped to available computing resources. The
scheduling process operates under defined
optimization criteria such as minimizing execution
time, reducing cost, maximizing resource
utilization, and ensuring load balancing. This
optimization-driven scheduling ensures that tasks
are efficiently distributed across virtual machines
(VMs) hosted on physical servers. The resource
allocation layer at the bottom demonstrates how
tasks are executed on computing resources. Virtual
machines (VMs) act as the abstraction layer
between physical servers and scheduled workflows,
thereby providing scalability, flexibility, and
dynamic resource management. Efficient workflow
scheduling in cloud computing is a prerequisite to
better resource utilization, less execution time, and
keeping to QoS requirements according to SLA
[12]. This paper presents a hybrid optimization
algorithm combining Bees Mating Optimization and
Bacterial Evolutionary Algorithm for better
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efficiency in scheduling. The proposed method
outperforms existing scheduling techniques because
of improvements in energy efficiency, scalability,
security while minimizing operational costs. Future
research will focus on extending the hybrid
optimization approach for incorporating machine
learning techniques for adaptive scheduling in
dynamic cloud environments. The outcomes of the
study bring significant contributions to the cloud
computing domain by providing a powerful and
efficient scheduling framework that would enhance
system performance and satisfy the demands of
users.

2. Related Work

Scheduling workflows in cloud computing is a
complicated problem, involving sufficient resource
management strategies and task execution [13].
Many research works tend to focus on improving the
efficiency of scheduling through hybrid algorithms
that combine heuristics plus meta-heuristics. In the
next section, contributions from five major studies
are explained as they attempt to explore different
methods optimally for workflow scheduling in
cloud environments. Arash etal. underlined the role
of task priority as well as the quality of the initial
population in  optimizing cloud workflow
scheduling [14]. They established that a
combination of Best-Fit and Round Robin
approaches significantly improved the quality of the
initial solution, leading to efficient scheduling
results. They also stated the importance of mutation
operations by suggesting that they could be used in
resource allocation and task management for
directing the optimization process. According to
their assessment, optimization of Response Time,
Makes pan, Load Balancing, and Speedup Ratio
through a hybrid bacterial evolutionary and bee
mating  optimization technique significantly
increases the performance in heterogeneous
distributed cloud environments. Gawali et al.
propose a scheduling algorithm that integrates
Multi-Attribute Hierarchical Process (MAHP) with
Bees and Bacterial Evolutionary Optimization [15].
This ensures optimized task assignment based on
resource demands and network constraints for
enhanced quality of service. In addition, similar
work was also done by Moon et al. employing an
Ant Colony Optimization (ACO) based task
scheduling scheme that efficiently distributes jobs
among virtual machines using reinforcement and
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diversity techniques [16]. Their scheme was
outlined to optimize customer cost through
decreased task execution delays, which is critical in
pay-per-use cloud business models. Gonzalez et al.
provide a comprehensive survey on cloud resource
management, identifying key challenges in
scientific and data-intensive workflows [17]. Their
research emphasizes multi-tenancy and elasticity,
two critical factors in modern cloud environments.
The study proposes a taxonomy for evaluating
existing cloud scheduling techniques and identifies
gaps in current research that need further
exploration. In a similar vein, Sahni et al. address
the unique constraints of cloud computing
environments, such as on-demand resource
provisioning and pay-per-use pricing models [18].
They propose a dynamic, cost-constrained heuristic
workflow scheduling algorithm that efficiently
orchestrates processes while minimizing costs.
Their method considers instance acquisition latency
and virtual machine performance variability,
ensuring optimized task execution in public cloud
settings. Rimal et al. focus on multi-tenancy in cloud
computing and its impact on workflow scheduling
[19]. Their study demonstrates that an effective
scheduling strategy can enhance workflow
performance by optimizing resource utilization
while maintaining cost efficiency. Meanwhile, Wen
et al. explore the complexities of deploying
workflow applications on federated clouds [20].
They introduce an entropy-based approach to
measure reliable workflow deployments and extend
the Bell-LaPadula security model to ensure secure
task execution. Their cost-aware optimization
strategy balances processing power, data storage,
and inter-cloud connectivity, resulting in a reliable
and cost-effective workflow scheduling solution.
Samar et al. focus on improving Particle Swarm
Optimization (PSO) by incorporating self-adaptive
functions that determine optimal particle movement
[21]. Their enhanced PSO algorithm outperforms
traditional methods in convergence speed and
efficiency, ensuring effective job scheduling. Shiri
et al. address the NP-complete nature of workflow
scheduling and propose an improved ant colony
optimization algorithm to optimize deadline-
constrained cloud workflows [22]. Their hybrid
approach ensures a cost-effective balance between
private and public cloud resources, reducing
execution time while maintaining efficiency. These
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studies collectively emphasize the significance of
hybrid optimization algorithms in improving cloud
workflow scheduling. By integrating heuristic and
meta-heuristic techniques, researchers have been
able to enhance scheduling efficiency, minimize
costs, and optimize resource utilization [23]. These
investigations found that the hybrid bacterial
evolutionary and bees mating optimization method
improves  cloud-based workflow scheduling
efficiency, scalability, and flexibility in dynamic
cloud settings.

3. Problem Statement

Cloud computing aggregates diverse resources such
as storage, processor power, internet connectivity,
and development tools—into virtualized pools to
support engineering, scientific research, and
commercial applications. Modern cloud datacentres
host heterogeneous resources to meet dynamic
demands of both providers and users.

A major challenge in this environment is workflow
scheduling, which determines how tasks are mapped
to resources. The problem is complex due to:

e Unpredictable workloads (varying execution
time, input size, and costs).

e Multiple performance objectives (time, cost,
energy consumption, and reliability).

e NP-hard nature of scheduling problems
(optimal solutions not achievable in
polynomial time).

Traditional scheduling approaches often fail to
balance cost, efficiency, and fault tolerance under
uncertainty. This creates the need for hybrid
metaheuristic  algorithms  that can  adapt
dynamically. The proposed study addresses this by
integrating Bees Mating Optimization (BMO) and
Bacterial Evolutionary Algorithm (BEA) into a
hybrid workflow scheduling framework.

Key Contributions:

e BMO Integration: Models bee colony
mating behavior to achieve efficient multi-
provider scheduling.

e Hybrid Approach (BMO + BEA):
Leverages swarm intelligence and bacterial
evolution for balanced job scheduling.

e Network Resource Optimization:
Adaptive BEA improves flexibility and
reduces local optima issues.

e Resource Utilization & Scalability:
Ensures reduced energy consumption and
better throughput.
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4. Proposed Method and System Modelling
4.1. The System Model

The Conclusion should contain the confirmation of
the problem that has been analyzed in result and
discussion section. The Conclusion should contain
the confirmation of the problem that has been
analyzed in result and discussion section. The
Conclusion should contain the confirmation of the
problem that has been analyzed in result and
discussion section. The primary challenge in cloud
computing environments is efficient task scheduling
that minimizes makespan while ensuring optimal
utilization of resources. In traditional scheduling
approaches such as Round Robin (RR) or Least
Loaded (LL), the allocation of tasks to virtual
machines (VMs) is performed without considering
task interdependencies, execution time variability,
or dynamic workload behavior. As a result, these
approaches often lead to imbalanced load
distribution, increased communication overheads,
and higher Service Level Agreement (SLA)
violations. To address these limitations, this study
integrates bio-inspired optimization techniques for
workflow scheduling in  cloud computing.
Specifically, the Biogeography-Based Mating
Optimization (BMO) algorithm is employed to
explore global scheduling solutions by simulating
the evolutionary behavior of queen—drone
reproduction. Complementing this, the Bacterial
Foraging Optimization Algorithm (BEA) refines

local task-to-VM mappings by simulating
chemotaxis, reproduction, and elimination—
dispersal strategies. The hybrid BMO-BEA

framework combines the global exploration
capabilities of BMO with the local exploitation
strengths of BEA, ensuring both diversity of
solutions and rapid convergence. The ultimate
objective is to design a scheduling strategy that
reduces overall makespan, achieves load balance
across VMs, and enhances resource efficiency in
large-scale cloud environments.

4.2. Proposed Architecture
The proposed scheduling framework follows a two-
stage hybrid optimization process. The workflow is
depicted in Figure 3, which illustrates how input
tasks, execution matrices, and communication
matrices are processed through the hybrid BMO-
BEA engine to achieve optimized scheduling. The
diagram illustrates the hybrid integration of the
Biogeography-Based Mating Optimization (BMO)
and Bacterial Foraging Optimization Algorithm
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(BEA) for cloud workflow scheduling. The process
starts with the initialization of task and VM
parameters.
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Figure 3 Workflow of the Hybrid BMO-BEA
Algorithm for Cloud Scheduling Optimization

The BMO stage generates multiple task-to-VM
mappings, selects the fittest Queen solution through
drone mating, and identifies an initial optimized
schedule. This Queen solution is then passed into
the BEA stage, where iterative chemotaxis,
reproduction, and elimination—dispersal loops refine
the schedule. Chemotaxis helps explore new
mappings, reproduction ensures the survival of
high-performing  solutions, and elimination—
dispersal introduces diversity to avoid stagnation.
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4.3. Algorithm: Hybrid BMO-BEA for
Cloud Workflow Scheduling
Input:
e CommMatrix — Task communication time
between dependent tasks
e ExecMatrix — Execution time of each task
on each VM
e Tt - Total number of tasks
e VMs — Total number of virtual machines
Output: Optimized scheduling with improved
Makespan and load balancing
e Initialize task set and VMs
Generate initial scheduling population
Apply BMO Optimization
Select Queen (best fitness solution)
Mate with Drones — generate offspring
Evaluate offspring fitness:
Fitness = max(ExecMatrix[i][VM] +
CommMatrix[i][Parent_Task_VM])
e Update Queen if offspring improves fitness
e Select best Queen solution from BMO as
input for BEA
e Apply BEA Optimization
e Chemotaxis: tumble and move toward
lower Makespan
e Swim: continue movement if J(p,q+1,r,t) <
J_last
e Reproduction: replicate top 50%,
eliminate bottom 50%
¢ Elimination—dispersal: reinitialize some
bacteria with probability Ped
e Repeat BEA until stopping criteria satisfied
e Return final best solution with minimum
Makespan Shown in Table 1.

Table 1 Comparison of Scheduling Algorithms for Cloud Optimization

Feature Bmo Algorithm Bea Algorithm Hybrid Bmo-Bea
Algorithm
Input CommMatrix, d, N, Nc, Ns, Nre, CommMatrix,
Parameters | ExecMatrix, Tt, VMs Ned, Ped, S(i) ExecMatrix, Tt, VMs
Population Random task-to-VM Random bacteria Random scheduling
Initialization mappings population population
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Bacterial Foraging
Optimization
s Bee Mating (Chemotaxis, Sequential hybrid: BMO
Optimizatio L . | b h
n Principle Optimization (Q_ueen, SWlm,_ selects best Qgeen,t en
Drones, Offspring) Reproduction, BEA refines
Elimination—
dispersal)
Fitness Makespan = J= Combination of BMO
Function max(Finishp Tir;e[i]) max(Finish_Time[ fitness + BEA
- i]) refinement
. Tumble and Swim |  Offspring generation
E)é;:lrgstlon CroDsrzc;]\;e:n(a?il:]et;n— (movement in (BMO) + Chemotaxis
9y g search space) and Swim (BEA)
Exploitation Mutation if no Replication of BEA improves BMO’s
Strategy improvement best bacteria best solution
L . . After Ned . .
Termination | Fixed generations / no Lo BEA stopping criteria
Criteria Queen improvement elimination- after BMO refinement
P dispersal steps
Scheduling solution Task-to-VM Opt|m|zed_ work_flow
i S ) . scheduling with
Output with minimum mapping with load | .
. improved Makespan and
Makespan balancing :
load balancing

4.4. Fitness Function
The fitness function in the system is designed to
evaluate scheduling efficiency based on two
primary metrics:

e Makespan (Cmax): The maximum
completion time across all tasks assigned
to processors.

Ciax = max(C;), VIET
Where C; is the completion time of task i.

e Communication Delay (Comm_delay):
For dependent tasks scheduled on
different processors:

Comm_delay = d;j x comm(i, j)
(i))EE
where d;; is the data size to be transferred, and
comm(i,j) is the communication cost between
tasks i and j.

e Fitness Function (F): A weighted sum

combining both metrics:

F=a Cpu + B -Comm_delay
where a and £ are tunable weights to balance
between execution efficiency and communication
overhead

Round Robin (RR) had the highest makespan at 88
seconds. To further illustrate the differences, the
following graph visually represents the makespan
values across the four algorithms Shown in Table 2.

Table 2 Makespan Values from Simulation

Results
Scheduler Makespan (Time)
Round Robin (RR) 28,421.54
BMO 25,674.32
BEA 31,534.62
SIN 22,004.70
Hybrid BMO-BEA 18,997.35

Makespan Comparison Between Scheduling Algorithms

5. Method Results
The results show that Hybrid BMO-BEA achieved
the lowest makespan of 18,997.35 seconds, while

International Research Journal on Advanced Science Hub (IRJASH)
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The bar chart illustrates a comparative analysis of
makespan measured in milliseconds (ms) for five
different scheduling algorithms: Round Robin
(RR), BMO, BEA, SJN, and a Hybrid BMO-BEA
algorithm. Makespan refers to the total time
required to complete a given set of tasks, and
minimizing it is a key objective in scheduling for
optimal performance. Among the algorithms, the
Hybrid BMO-BEA achieves the lowest makespan,
approximately 19,000 ms, indicating the highest
scheduling efficiency. This is followed by the SIN
(Shortest Job Next) algorithm with a makespan of
around 22,000 ms, suggesting that prioritizing
shorter tasks can lead to better time management.
The BMO algorithm performs moderately well with
a makespan close to 25,500 ms, outperforming both
Round Robin and BEA. Round Robin (RR), with a
makespan near 28,500 ms, and BEA, the worst
performer with a makespan exceeding 31,000 ms,
reflect relatively inefficient task scheduling in this
context Shown in Figure 4 and 5.

vM 1

vMm 2

Figure 5 VM Utilization Distribution

The pie chart visually represents the percentage
distribution of four virtual machines (VMs) — VM
0, VM 1, VM 2, and VM 3 — likely in terms of
resource usage or workload allocation. Among
them, VM 3 holds the largest share at 30.4%,
indicating it is currently handling the most
significant portion of the load or resources. VM 2
follows with 26.8%, reflecting a substantial but
slightly lower allocation. VM 1 is assigned 23.2%,
and VM O carries the smallest share at 19.6%. This
distribution may imply a prioritization or
performance-based allocation, where more efficient
or higher-capacity VMs are handling greater loads.
Alternatively, it could indicate a load-balancing
strategy with VM 3 being the most active or relied
upon in the current setup. The color differentiation
helps in quickly identifying each segment, and the
percentages provide clarity on how the total
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workload or capacity is divided. If this chart reflects
a real-time or recent snapshot, it may also be used to
assess whether the system is optimized or if any VM
is underutilized or overburdened Shown in Figure 6.

Task Time C.

for Different Algorithms

I
. — — —

Figure 6 Task Execution Time Comparison
for Different Algorithms

The stacked bar chart compares the task
execution times of different scheduling
algorithms—Round Robin (RR), BMO, BEA,
SJN, and Hybrid BMO-BEA—across four
cloudlets. Each bar represents the cumulative
execution time for a specific cloudlet using all
five algorithms. Cloudlet 1 exhibits a
significantly higher total execution time,
exceeding 125,000 milliseconds, with each
algorithm  contributing substantially. This
suggests that Cloudlet 1 may be handling a
considerably heavier workload or larger tasks
compared to the others. Among all the
algorithms in Cloudlet 1, Round Robin and BEA
appear to consume the most execution time,
indicating lower efficiency for complex or large
task loads. In contrast, Cloudlets 2, 3, and 4
show a balanced and significantly lower
execution time—each ranging between 15,000
to 25,000 milliseconds—highlighting better
performance across all algorithms under lighter
or more evenly distributed task loads. Notably,
the Hybrid BMO-BEA algorithm consistently
demonstrates lower execution times in all
cloudlets, reinforcing its efficiency and
adaptability across varying workloads. The line
chart illustrates the cumulative task completion
over time (in milliseconds) for five scheduling
algorithms: Round Robin (RR), BMO, BEA,
SIN, and Hybrid BMO-BEA. The x-axis
represents time, while the y-axis shows the total
number of tasks completed by each algorithm.
Across all time intervals 20 ms, 40 ms, 60 ms,
and 80 ms the Hybrid BMO-BEA consistently
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outperforms the other algorithms, demonstrating
the highest cumulative task completion. At 80
ms, it completes more than 110 tasks, indicating
superior throughput and efficiency. SIN closely
follows, maintaining a steady and high
completion rate, especially at later stages. BMO
performs moderately well, outperforming both
Round Robin and BEA. Round Robin shows
consistent progress but lags behind SIJN and
Hybrid BMO-BEA, suggesting that while it
offers fairness, it may not be optimized for
performance under high workloads Shown in
Figure 7.
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Figure 7 Cumulative Task Completion over
Time
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Figure 8 Comparison of Observation
Results Vs Proposed Algorithm

This figure 8 compares the performance of
baseline schedulers and the proposed Hybrid
BMO-BEA with observation-based methods
(DBSCAN clustering and Work Stealing). The
bar chart illustrates makespan values, while the
red line denotes observation scores. Hybrid
BMO-BEA achieved the lowest makespan,
demonstrating significant improvement over
both conventional schedulers and observation-
based approaches
5.1. Analysis of Makespan Differences

The makespan, which represents the maximum

completion time required to execute all scheduled
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tasks, shows notable variations across the
evaluated scheduling strategies. From the
experimental results, the Hybrid BMO-BEA
achieved the lowest makespan of 18,997.35,
establishing itself as the most efficient approach.
In contrast, the BEA alone recorded the highest
makespan of 31,534.62, indicating suboptimal
performance when applied in isolation. The
Shortest Job Next (SJN) scheduler performed
significantly well with a makespan of 22,004.70,
outperforming both Round Robin (28,421.54) and
BMO (25,674.32). SIN’s effectiveness lies in its
prioritization of shorter tasks, ensuring faster
turnaround and quicker resource release. The
BMO algorithm focused on load balancing and
energy efficiency, which reduced the makespan
compared to Round Robin but not as efficiently as
SJIN. Although slower in terms of completion time
than SJN, BMO remains valuable in sustainability-
driven applications due to its energy-conscious
task distribution.

5.2. Energy Efficiency Trade-off
The evaluation of scheduling strategies revealed
that the Hybrid BMO-BEA framework not only
minimizes makespan but also incorporates energy-
conscious scheduling decisions. The synergy
between BMO’s load-balancing and energy
optimization and BEA’s evolutionary task
distribution provides a dual benefit: reduced
execution time and sustainable resource
utilization. While Shortest Job Next (SJIN)
demonstrated excellent performance in makespan
(22,004.70), it inherently lacks mechanisms for
energy conservation. By prioritizing smaller tasks,
SIJN maximizes throughput but often leads to
uneven workload distribution, with some VMs
becoming overutilized while others remain idle.
This imbalance can result in unnecessary energy
spikes and accelerated hardware wear, making
SJN less sustainable for large-scale, long-running
cloud systems. The Biogeography-Based
Optimization (BMO) algorithm, though slower
(25,674.32), contributes positively to energy
efficiency by distributing workloads evenly across
virtual machines (VMs). This reduces peak loads,
prevents overheating, and prolongs system
lifetime. However, the trade-off is an increased
makespan compared to SJN. Similarly, the
Bacterial ~ Evolutionary  Algorithm  (BEA)
independently produced the highest makespan
(31,534.62), reflecting inefficiencies when not
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combined with complementary strategies. Despite
this, BEA demonstrates adaptability in balancing
performance with energy awareness, as it
dynamically restructures task allocation to avoid
overloading. The Round Robin (RR) scheduler
(28,421.54) remains neutral, offering neither
optimized makespan nor energy benefits, since
tasks are distributed cyclically  without
consideration of execution time or system load.
The Hybrid BMO-BEA approach (18,997.35)
represents the optimal balance between
performance and energy trade-offs. By combining
the evolutionary strengths of BEA with the
ecological distribution strategies of BMO, it
reduces overall makespan while preventing energy
inefficiencies associated with task clustering. This
balance makes Hybrid BMO-BEA particularly
effective for cloud environments where both speed
and sustainability are critical.

5.3. Discussion of Findings
The comparative analysis of scheduling
algorithms reveals significant differences in
makespan performance. The Hybrid BMO-BEA
achieved the lowest makespan (18,997.35),
demonstrating the effectiveness of combining
evolutionary optimization and adaptive bacterial
strategies for balanced task allocation and efficient
resource utilization. Shortest Job Next (SJN)
followed with a makespan of 22,004.70,
confirming its efficiency in handling smaller jobs
quickly; however, its unbalanced VM utilization
limits scalability. BMO recorded a makespan of
25,674.32, highlighting its strength in energy-
aware scheduling but showing delays due to
iterative evolutionary overhead. Round Robin
(RR), while fair in distributing tasks, produced a
higher makespan of 28,421.54 as it fails to account
for task heterogeneity. Bacterial Evolutionary
Algorithm (BEA) performed the least efficiently
with a makespan of 31,534.62, as its adaptive
mechanisms could not fully offset execution
delays.
Conclusion
The comparative study of scheduling algorithms
demonstrates that makespan optimization in
cloud—edge computing is highly dependent on the
strategy employed. Traditional approaches such as
Shortest Job Next (SJN) and Round Robin (RR)
offer simplicity and speed in specific contexts, but
both suffer from critical limitations: SJN tends to

2025, Vol. 07, Issue 12 December

overload certain virtual machines while leaving
others underutilized, whereas RR enforces fairness
at the expense of efficiency by ignoring task
heterogeneity. Metaheuristic-based methods such
as BMO and Bacterial Evolutionary Algorithm
(BEA) incorporate adaptive and evolutionary
principles, improving load distribution and energy
awareness but at the cost of increased makespan
due to iterative computation. These findings
highlight the trade-off between execution speed
and sustainability in resource scheduling. The
Hybrid BMO-BEA algorithm proved to be the
most effective, achieving the lowest makespan
(18,997.35) by synergizing the optimization
strengths of both BMO and BEA. This
hybridization not only reduced execution time but
also enhanced load balancing and energy
efficiency, making it superior to conventional and
standalone evolutionary methods.
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