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1. Introduction 
Cloud computing has transformed distributed 

computing by providing on-demand access to 

computational resources, thereby reducing the need 

for costly hardware and software investments. It 

offers a scalable and adaptable environment that 

enables users to deploy applications and execute 

tasks efficiently while maintaining cost-

effectiveness [1]. These applications typically 

consist of interdependent tasks forming workflows, 

which must be scheduled effectively across virtual 

machines (VMs) to optimize resource utilization 

and ensure Quality of Service (QoS) as defined in 

Service Level Agreements (SLAs)[2]. This research 

presents a cloud-based hybrid optimization 

approach for workflow scheduling (HOWS). The 

algorithm combines BEA and BMO [3]. The 

suggested method improves resource allocation and 

work scheduling, improving cloud computing. The 
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Cloud computing has emerged as a rapidly maturing paradigm that delivers 

software applications and hardware infrastructure as services through 

Service Level Agreements (SLAs). A critical challenge in this environment is 

the efficient scheduling of interdependent tasks across virtual machines 

(VMs) while minimizing resource consumption and meeting Quality of 

Service (QoS) requirements. This paper proposes a Hybrid Optimization 

Workflow Scheduling (HOWS) algorithm that integrates Bees Mating 

Optimization (BMO) for global resource exploration and Bacterial 

Evolutionary Algorithm (BEA) for adaptive local refinement. The hybrid 

framework improves workflow scheduling by ensuring balanced task 

allocation, optimal VM utilization, enhanced energy efficiency, and system 

scalability. Simulation experiments conducted in CloudSim demonstrate that 

the proposed model significantly outperforms traditional scheduling 

algorithms such as Round Robin and Shortest Job Next in terms of makespan 

reduction, workload balancing, and overall throughput. The results establish 

HOWS as an effective and secure scheduling strategy, contributing to 

improved resource management and robust performance in dynamic cloud 

environments. Future directions include 
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BMO component ensures effective scheduling by 

sharing physical infrastructure across various 

service providers. Additionally, the BEA 

component improves network resource use for 

better job scheduling by enabling flexible access [4]. 

Workflow scheduling in cloud computing is a 

complex, NP-hard problem due to the dynamic and 

heterogeneous nature of cloud environments. 

Efficient scheduling algorithms must 

simultaneously minimize execution time, cost, and 

resource consumption while balancing workloads 

across VMs. Traditional scheduling methods, such 

as FIFO, Round Robin (RR), Shortest Job Next 

(SJN), Particle Swarm Optimization (PSO), and Ant 

Colony Optimization (ACO), demonstrate limited 

adaptability and often fail to optimize multiple QoS 

parameters in large-scale dynamic systems. Cloud 

computing provides a comprehensive paradigm that 

facilitates the sharing of a reservoir of configurable 

computational resources, such as storage, networks, 

and applications [5]. To address these limitations, 

this research presents a Hybrid Optimization 

Workflow Scheduling (HOWS) algorithm that 

integrates Bees Mating Optimization (BMO) and 

the Bacterial Evolutionary Algorithm (BEA). The 

BMO component enhances global task-to-resource 

mapping through efficient infrastructure sharing 

among multiple service providers, while BEA 

improves local resource utilization and network 

performance via adaptive refinement [5]. By 

combining these strategies, the hybrid model 

achieves improved load balancing, reduced 

makespan, and enhanced scalability [6]. The 

dependency relationships are generally tough with 

parent-child relationships among tasks to which are 

shown in the workflow DAG in Figure 1. 

Traditional scheduling techniques are bounded with 

respect to scalability, cost optimization, and task 

execution time [7]. 

 

 
Figure 1 Workflow Applications DAG [8] 

The aim of the present work is to develop a 

composite optimization algorithm that combines the 

merits of the BEA and Bees Mating Optimization 

(BMO) [9]. The improvement of BMO increases 

resource-sharing capabilities by permitting several 

service providers to achieve any scheduling 

optimization. This algorithm optimally assigns best-

fit resources for the task, thereby reducing 

computational overhead and being inspired by 

natural mating behavior of bees [10] Shown in 

Figure 2. 

 

 
Figure 2 Workflow Scheduling Framework in 

Cloud Computing 

 

The figure illustrates the proposed workflow 

scheduling framework in a cloud computing 

environment. At the top, cloud users submit diverse 

workflows consisting of multiple interdependent 

tasks (V1, V2, V3 … Vn). These workflows are 

passed to the scheduling framework, where tasks are 

mapped to available computing resources. The 

scheduling process operates under defined 

optimization criteria such as minimizing execution 

time, reducing cost, maximizing resource 

utilization, and ensuring load balancing. This 

optimization-driven scheduling ensures that tasks 

are efficiently distributed across virtual machines 

(VMs) hosted on physical servers. The resource 

allocation layer at the bottom demonstrates how 

tasks are executed on computing resources. Virtual 

machines (VMs) act as the abstraction layer 

between physical servers and scheduled workflows, 

thereby providing scalability, flexibility, and 

dynamic resource management. Efficient workflow 

scheduling in cloud computing is a prerequisite to 

better resource utilization, less execution time, and 

keeping to QoS requirements according to SLA 

[12]. This paper presents a hybrid optimization 

algorithm combining Bees Mating Optimization and 

Bacterial Evolutionary Algorithm for better 
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efficiency in scheduling. The proposed method 

outperforms existing scheduling techniques because 

of improvements in energy efficiency, scalability, 

security while minimizing operational costs. Future 

research will focus on extending the hybrid 

optimization approach for incorporating machine 

learning techniques for adaptive scheduling in 

dynamic cloud environments. The outcomes of the 

study bring significant contributions to the cloud 

computing domain by providing a powerful and 

efficient scheduling framework that would enhance 

system performance and satisfy the demands of 

users. 

2. Related Work 

Scheduling workflows in cloud computing is a 

complicated problem, involving sufficient resource 

management strategies and task execution [13]. 

Many research works tend to focus on improving the 

efficiency of scheduling through hybrid algorithms 

that combine heuristics plus meta-heuristics. In the 

next section, contributions from five major studies 

are explained as they attempt to explore different 

methods optimally for workflow scheduling in 

cloud environments.  Arash et al. underlined the role 

of task priority as well as the quality of the initial 

population in optimizing cloud workflow 

scheduling [14]. They established that a 

combination of Best-Fit and Round Robin 

approaches significantly improved the quality of the 

initial solution, leading to efficient scheduling 

results. They also stated the importance of mutation 

operations by suggesting that they could be used in 

resource allocation and task management for 

directing the optimization process. According to 

their assessment, optimization of Response Time, 

Makes pan, Load Balancing, and Speedup Ratio 

through a hybrid bacterial evolutionary and bee 

mating optimization technique significantly 

increases the performance in heterogeneous 

distributed cloud environments. Gawali et al. 

propose a scheduling algorithm that integrates 

Multi-Attribute Hierarchical Process (MAHP) with 

Bees and Bacterial Evolutionary Optimization [15]. 

This ensures optimized task assignment based on 

resource demands and network constraints for 

enhanced quality of service. In addition, similar 

work was also done by Moon et al. employing an 

Ant Colony Optimization (ACO) based task 

scheduling scheme that efficiently distributes jobs 

among virtual machines using reinforcement and 

diversity techniques [16]. Their scheme was 

outlined to optimize customer cost through 

decreased task execution delays, which is critical in 

pay-per-use cloud business models. Gonzalez et al. 

provide a comprehensive survey on cloud resource 

management, identifying key challenges in 

scientific and data-intensive workflows [17].  Their 

research emphasizes multi-tenancy and elasticity, 

two critical factors in modern cloud environments. 

The study proposes a taxonomy for evaluating 

existing cloud scheduling techniques and identifies 

gaps in current research that need further 

exploration. In a similar vein, Sahni et al. address 

the unique constraints of cloud computing 

environments, such as on-demand resource 

provisioning and pay-per-use pricing models [18]. 

They propose a dynamic, cost-constrained heuristic 

workflow scheduling algorithm that efficiently 

orchestrates processes while minimizing costs. 

Their method considers instance acquisition latency 

and virtual machine performance variability, 

ensuring optimized task execution in public cloud 

settings. Rimal et al. focus on multi-tenancy in cloud 

computing and its impact on workflow scheduling 

[19]. Their study demonstrates that an effective 

scheduling strategy can enhance workflow 

performance by optimizing resource utilization 

while maintaining cost efficiency. Meanwhile, Wen 

et al. explore the complexities of deploying 

workflow applications on federated clouds [20]. 

They introduce an entropy-based approach to 

measure reliable workflow deployments and extend 

the Bell-LaPadula security model to ensure secure 

task execution. Their cost-aware optimization 

strategy balances processing power, data storage, 

and inter-cloud connectivity, resulting in a reliable 

and cost-effective workflow scheduling solution. 

Samar et al. focus on improving Particle Swarm 

Optimization (PSO) by incorporating self-adaptive 

functions that determine optimal particle movement 

[21]. Their enhanced PSO algorithm outperforms 

traditional methods in convergence speed and 

efficiency, ensuring effective job scheduling. Shiri 

et al. address the NP-complete nature of workflow 

scheduling and propose an improved ant colony 

optimization algorithm to optimize deadline-

constrained cloud workflows [22]. Their hybrid 

approach ensures a cost-effective balance between 

private and public cloud resources, reducing 

execution time while maintaining efficiency. These 
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studies collectively emphasize the significance of 

hybrid optimization algorithms in improving cloud 

workflow scheduling. By integrating heuristic and 

meta-heuristic techniques, researchers have been 

able to enhance scheduling efficiency, minimize 

costs, and optimize resource utilization [23]. These 

investigations found that the hybrid bacterial 

evolutionary and bees mating optimization method 

improves cloud-based workflow scheduling 

efficiency, scalability, and flexibility in dynamic 

cloud settings.  

3. Problem Statement  

Cloud computing aggregates diverse resources such 

as storage, processor power, internet connectivity, 

and development tools—into virtualized pools to 

support engineering, scientific research, and 

commercial applications. Modern cloud datacentres 

host heterogeneous resources to meet dynamic 

demands of both providers and users. 

A major challenge in this environment is workflow 

scheduling, which determines how tasks are mapped 

to resources. The problem is complex due to: 

 Unpredictable workloads (varying execution 

time, input size, and costs). 

 Multiple performance objectives (time, cost, 

energy consumption, and reliability). 

 NP-hard nature of scheduling problems 

(optimal solutions not achievable in 

polynomial time). 

Traditional scheduling approaches often fail to 

balance cost, efficiency, and fault tolerance under 

uncertainty. This creates the need for hybrid 

metaheuristic algorithms that can adapt 

dynamically. The proposed study addresses this by 

integrating Bees Mating Optimization (BMO) and 

Bacterial Evolutionary Algorithm (BEA) into a 

hybrid workflow scheduling framework. 

Key Contributions: 

 BMO Integration: Models bee colony 

mating behavior to achieve efficient multi-

provider scheduling. 

 Hybrid Approach (BMO + BEA): 
Leverages swarm intelligence and bacterial 

evolution for balanced job scheduling. 

 Network Resource Optimization: 
Adaptive BEA improves flexibility and 

reduces local optima issues. 

 Resource Utilization & Scalability: 
Ensures reduced energy consumption and 

better throughput. 

4. Proposed Method and System Modelling    

4.1. The System Model 

The Conclusion should contain the confirmation of 

the problem that has been analyzed in result and 

discussion section. The Conclusion should contain 

the confirmation of the problem that has been 

analyzed in result and discussion section. The 

Conclusion should contain the confirmation of the 

problem that has been analyzed in result and 

discussion section. The primary challenge in cloud 

computing environments is efficient task scheduling 

that minimizes makespan while ensuring optimal 

utilization of resources. In traditional scheduling 

approaches such as Round Robin (RR) or Least 

Loaded (LL), the allocation of tasks to virtual 

machines (VMs) is performed without considering 

task interdependencies, execution time variability, 

or dynamic workload behavior. As a result, these 

approaches often lead to imbalanced load 

distribution, increased communication overheads, 

and higher Service Level Agreement (SLA) 

violations. To address these limitations, this study 

integrates bio-inspired optimization techniques for 

workflow scheduling in cloud computing. 

Specifically, the Biogeography-Based Mating 

Optimization (BMO) algorithm is employed to 

explore global scheduling solutions by simulating 

the evolutionary behavior of queen–drone 

reproduction. Complementing this, the Bacterial 

Foraging Optimization Algorithm (BEA) refines 

local task-to-VM mappings by simulating 

chemotaxis, reproduction, and elimination–

dispersal strategies. The hybrid BMO–BEA 

framework combines the global exploration 

capabilities of BMO with the local exploitation 

strengths of BEA, ensuring both diversity of 

solutions and rapid convergence. The ultimate 

objective is to design a scheduling strategy that 

reduces overall makespan, achieves load balance 

across VMs, and enhances resource efficiency in 

large-scale cloud environments. 

4.2. Proposed Architecture 

The proposed scheduling framework follows a two-

stage hybrid optimization process. The workflow is 

depicted in Figure 3, which illustrates how input 

tasks, execution matrices, and communication 

matrices are processed through the hybrid BMO–

BEA engine to achieve optimized scheduling. The 

diagram illustrates the hybrid integration of the 

Biogeography-Based Mating Optimization (BMO) 

and Bacterial Foraging Optimization Algorithm 
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(BEA) for cloud workflow scheduling. The process 

starts with the initialization of task and VM 

parameters. 

 

 
Figure 3 Workflow of the Hybrid BMO–BEA 

Algorithm for Cloud Scheduling Optimization 

 

The BMO stage generates multiple task-to-VM 

mappings, selects the fittest Queen solution through 

drone mating, and identifies an initial optimized 

schedule. This Queen solution is then passed into 

the BEA stage, where iterative chemotaxis, 

reproduction, and elimination–dispersal loops refine 

the schedule. Chemotaxis helps explore new 

mappings, reproduction ensures the survival of 

high-performing solutions, and elimination–

dispersal introduces diversity to avoid stagnation. 

4.3. Algorithm: Hybrid BMO–BEA for 

Cloud Workflow Scheduling 

Input:  

 CommMatrix – Task communication time 

between dependent tasks 

 ExecMatrix – Execution time of each task 

on each VM 

 Tt – Total number of tasks 

 VMs – Total number of virtual machines 

Output: Optimized scheduling with improved 

Makespan and load balancing 

 Initialize task set and VMs 

 Generate initial scheduling population 

 Apply BMO Optimization 

 Select Queen (best fitness solution) 

 Mate with Drones → generate offspring 

 Evaluate offspring fitness: 

Fitness = max(ExecMatrix[i][VM] + 

CommMatrix[i][Parent_Task_VM]) 

 Update Queen if offspring improves fitness 

 Select best Queen solution from BMO as 

input for BEA 

 Apply BEA Optimization 

 Chemotaxis: tumble and move toward 

lower Makespan 

 Swim: continue movement if J(p,q+1,r,t) < 

J_last 

 Reproduction: replicate top 50%, 

eliminate bottom 50% 

 Elimination–dispersal: reinitialize some 

bacteria with probability Ped 

 Repeat BEA until stopping criteria satisfied 

 Return final best solution with minimum 

Makespan Shown in Table 1. 

 

 

Table 1 Comparison of Scheduling Algorithms for Cloud Optimization 

Feature Bmo Algorithm Bea Algorithm 
Hybrid Bmo–Bea 

Algorithm 

Input 

Parameters 

CommMatrix, 

ExecMatrix, Tt, VMs 

d, N, Nc, Ns, Nre, 

Ned, Ped, S(i) 

CommMatrix, 

ExecMatrix, Tt, VMs 

Population 

Initialization 

Random task-to-VM 

mappings 

Random bacteria 

population 

Random scheduling 

population 
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Optimizatio

n Principle 

Bee Mating 

Optimization (Queen, 

Drones, Offspring) 

Bacterial Foraging 

Optimization 

(Chemotaxis, 

Swim, 

Reproduction, 

Elimination–

dispersal) 

Sequential hybrid: BMO 

selects best Queen, then 

BEA refines 

Fitness 

Function 

Makespan = 

max(Finish_Time[i]) 

J = 

max(Finish_Time[

i]) 

Combination of BMO 

fitness + BEA 

refinement 

Exploration 

Strategy 

Crossover (Queen–

Drone mating) 

Tumble and Swim 

(movement in 

search space) 

Offspring generation 

(BMO) + Chemotaxis 

and Swim (BEA) 

Exploitation 

Strategy 

Mutation if no 

improvement 

Replication of 

best bacteria 

BEA improves BMO’s 

best solution 

Termination 

Criteria 

Fixed generations / no 

Queen improvement 

After Ned 

elimination–

dispersal steps 

BEA stopping criteria 

after BMO refinement 

Output 

Scheduling solution 

with minimum 

Makespan 

Task-to-VM 

mapping with load 

balancing 

Optimized workflow 

scheduling with 

improved Makespan and 

load balancing 

4.4. Fitness Function  

The fitness function in the system is designed to 

evaluate scheduling efficiency based on two 

primary metrics: 

 Makespan (Cmax): The maximum 

completion time across all tasks assigned 

to processors. 

𝑪𝒎𝒂𝒙 = 𝐦𝐚𝐱(𝑪𝒊), ∀𝒊 ∈ 𝑻 

Where 𝐶𝑖 is the completion time of task 𝑖. 
 Communication Delay (Comm_delay): 

For dependent tasks scheduled on 

different processors: 

𝑪𝒐𝒎𝒎_𝒅𝒆𝒍𝒂𝒚 = ∑ 𝒅𝒊𝒋

(𝒊,𝒋)∈𝑬

× 𝒄𝒐𝒎𝒎(𝒊, 𝒋) 

where 𝑑𝑖𝑗  is the data size to be transferred, and 

𝑐𝑜𝑚𝑚(𝑖, 𝑗) is the communication cost between 

tasks 𝑖 and 𝑗. 

 Fitness Function (F): A weighted sum 

combining both metrics: 

𝑭 = 𝜶 ⋅ 𝑪𝒎𝒂𝒙 + 𝜷 ⋅ 𝑪𝒐𝒎𝒎_𝒅𝒆𝒍𝒂𝒚 

where 𝛼 and 𝛽 are tunable weights to balance 

between execution efficiency and communication 

overhead 

5. Method Results 

The results show that Hybrid BMO-BEA achieved 

the lowest makespan of 18,997.35 seconds, while 

Round Robin (RR) had the highest makespan at 88 

seconds. To further illustrate the differences, the 

following graph visually represents the makespan 

values across the four algorithms Shown in Table 2. 

 

Table 2 Makespan Values from Simulation 

Results 

Scheduler Makespan (Time) 

Round Robin (RR) 28,421.54 

BMO 25,674.32 

BEA 31,534.62 

SJN 22,004.70 

Hybrid BMO-BEA 18,997.35 

 

 
Figure 4 Makespan Comparison between 

Scheduling Algorithms 
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The bar chart illustrates a comparative analysis of 

makespan measured in milliseconds (ms) for five 

different scheduling algorithms: Round Robin 

(RR), BMO, BEA, SJN, and a Hybrid BMO-BEA 

algorithm. Makespan refers to the total time 

required to complete a given set of tasks, and 

minimizing it is a key objective in scheduling for 

optimal performance. Among the algorithms, the 

Hybrid BMO-BEA achieves the lowest makespan, 

approximately 19,000 ms, indicating the highest 

scheduling efficiency. This is followed by the SJN 

(Shortest Job Next) algorithm with a makespan of 

around 22,000 ms, suggesting that prioritizing 

shorter tasks can lead to better time management. 

The BMO algorithm performs moderately well with 

a makespan close to 25,500 ms, outperforming both 

Round Robin and BEA. Round Robin (RR), with a 

makespan near 28,500 ms, and BEA, the worst 

performer with a makespan exceeding 31,000 ms, 

reflect relatively inefficient task scheduling in this 

context Shown in Figure 4 and 5. 

 

 
Figure 5 VM Utilization Distribution 

 

The pie chart visually represents the percentage 

distribution of four virtual machines (VMs) — VM 

0, VM 1, VM 2, and VM 3 — likely in terms of 

resource usage or workload allocation. Among 

them, VM 3 holds the largest share at 30.4%, 

indicating it is currently handling the most 

significant portion of the load or resources. VM 2 

follows with 26.8%, reflecting a substantial but 

slightly lower allocation. VM 1 is assigned 23.2%, 

and VM 0 carries the smallest share at 19.6%. This 

distribution may imply a prioritization or 

performance-based allocation, where more efficient 

or higher-capacity VMs are handling greater loads. 

Alternatively, it could indicate a load-balancing 

strategy with VM 3 being the most active or relied 

upon in the current setup. The color differentiation 

helps in quickly identifying each segment, and the 

percentages provide clarity on how the total 

workload or capacity is divided. If this chart reflects 

a real-time or recent snapshot, it may also be used to 

assess whether the system is optimized or if any VM 

is underutilized or overburdened Shown in Figure 6. 

 

 
Figure 6 Task Execution Time Comparison 

for Different Algorithms 

 

The stacked bar chart compares the task 

execution times of different scheduling 

algorithms—Round Robin (RR), BMO, BEA, 

SJN, and Hybrid BMO-BEA—across four 

cloudlets. Each bar represents the cumulative 

execution time for a specific cloudlet using all 

five algorithms. Cloudlet 1 exhibits a 

significantly higher total execution time, 

exceeding 125,000 milliseconds, with each 

algorithm contributing substantially. This 

suggests that Cloudlet 1 may be handling a 

considerably heavier workload or larger tasks 

compared to the others. Among all the 

algorithms in Cloudlet 1, Round Robin and BEA 

appear to consume the most execution time, 

indicating lower efficiency for complex or large 

task loads. In contrast, Cloudlets 2, 3, and 4 

show a balanced and significantly lower 

execution time—each ranging between 15,000 

to 25,000 milliseconds—highlighting better 

performance across all algorithms under lighter 

or more evenly distributed task loads. Notably, 

the Hybrid BMO-BEA algorithm consistently 

demonstrates lower execution times in all 

cloudlets, reinforcing its efficiency and 

adaptability across varying workloads. The line 

chart illustrates the cumulative task completion 

over time (in milliseconds) for five scheduling 

algorithms: Round Robin (RR), BMO, BEA, 

SJN, and Hybrid BMO-BEA. The x-axis 

represents time, while the y-axis shows the total 

number of tasks completed by each algorithm. 

Across all time intervals 20 ms, 40 ms, 60 ms, 

and 80 ms the Hybrid BMO-BEA consistently 
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outperforms the other algorithms, demonstrating 

the highest cumulative task completion. At 80 

ms, it completes more than 110 tasks, indicating 

superior throughput and efficiency. SJN closely 

follows, maintaining a steady and high 

completion rate, especially at later stages. BMO 

performs moderately well, outperforming both 

Round Robin and BEA. Round Robin shows 

consistent progress but lags behind SJN and 

Hybrid BMO-BEA, suggesting that while it 

offers fairness, it may not be optimized for 

performance under high workloads Shown in 

Figure 7. 

 

 
Figure 7 Cumulative Task Completion over 

Time 

 

 
Figure 8 Comparison of Observation 

Results Vs Proposed Algorithm 

 

This figure 8 compares the performance of 

baseline schedulers and the proposed Hybrid 

BMO-BEA with observation-based methods 

(DBSCAN clustering and Work Stealing). The 

bar chart illustrates makespan values, while the 

red line denotes observation scores. Hybrid 

BMO-BEA achieved the lowest makespan, 

demonstrating significant improvement over 

both conventional schedulers and observation-

based approaches 

5.1. Analysis of Makespan Differences 
The makespan, which represents the maximum 

completion time required to execute all scheduled 

tasks, shows notable variations across the 

evaluated scheduling strategies. From the 

experimental results, the Hybrid BMO–BEA 

achieved the lowest makespan of 18,997.35, 

establishing itself as the most efficient approach. 

In contrast, the BEA alone recorded the highest 

makespan of 31,534.62, indicating suboptimal 

performance when applied in isolation. The 

Shortest Job Next (SJN) scheduler performed 

significantly well with a makespan of 22,004.70, 

outperforming both Round Robin (28,421.54) and 

BMO (25,674.32). SJN’s effectiveness lies in its 

prioritization of shorter tasks, ensuring faster 

turnaround and quicker resource release. The 

BMO algorithm focused on load balancing and 

energy efficiency, which reduced the makespan 

compared to Round Robin but not as efficiently as 

SJN. Although slower in terms of completion time 

than SJN, BMO remains valuable in sustainability-

driven applications due to its energy-conscious 

task distribution. 

5.2. Energy Efficiency Trade-off 

The evaluation of scheduling strategies revealed 

that the Hybrid BMO–BEA framework not only 

minimizes makespan but also incorporates energy-

conscious scheduling decisions. The synergy 

between BMO’s load-balancing and energy 

optimization and BEA’s evolutionary task 

distribution provides a dual benefit: reduced 

execution time and sustainable resource 

utilization. While Shortest Job Next (SJN) 

demonstrated excellent performance in makespan 

(22,004.70), it inherently lacks mechanisms for 

energy conservation. By prioritizing smaller tasks, 

SJN maximizes throughput but often leads to 

uneven workload distribution, with some VMs 

becoming overutilized while others remain idle. 

This imbalance can result in unnecessary energy 

spikes and accelerated hardware wear, making 

SJN less sustainable for large-scale, long-running 

cloud systems. The Biogeography-Based 

Optimization (BMO) algorithm, though slower 

(25,674.32), contributes positively to energy 

efficiency by distributing workloads evenly across 

virtual machines (VMs). This reduces peak loads, 

prevents overheating, and prolongs system 

lifetime. However, the trade-off is an increased 

makespan compared to SJN. Similarly, the 

Bacterial Evolutionary Algorithm (BEA) 

independently produced the highest makespan 

(31,534.62), reflecting inefficiencies when not 
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combined with complementary strategies. Despite 

this, BEA demonstrates adaptability in balancing 

performance with energy awareness, as it 

dynamically restructures task allocation to avoid 

overloading. The Round Robin (RR) scheduler 

(28,421.54) remains neutral, offering neither 

optimized makespan nor energy benefits, since 

tasks are distributed cyclically without 

consideration of execution time or system load. 

The Hybrid BMO–BEA approach (18,997.35) 

represents the optimal balance between 

performance and energy trade-offs. By combining 

the evolutionary strengths of BEA with the 

ecological distribution strategies of BMO, it 

reduces overall makespan while preventing energy 

inefficiencies associated with task clustering. This 

balance makes Hybrid BMO–BEA particularly 

effective for cloud environments where both speed 

and sustainability are critical. 

5.3. Discussion of Findings 

The comparative analysis of scheduling 

algorithms reveals significant differences in 

makespan performance. The Hybrid BMO-BEA 

achieved the lowest makespan (18,997.35), 

demonstrating the effectiveness of combining 

evolutionary optimization and adaptive bacterial 

strategies for balanced task allocation and efficient 

resource utilization. Shortest Job Next (SJN) 

followed with a makespan of 22,004.70, 

confirming its efficiency in handling smaller jobs 

quickly; however, its unbalanced VM utilization 

limits scalability. BMO recorded a makespan of 

25,674.32, highlighting its strength in energy-

aware scheduling but showing delays due to 

iterative evolutionary overhead. Round Robin 

(RR), while fair in distributing tasks, produced a 

higher makespan of 28,421.54 as it fails to account 

for task heterogeneity. Bacterial Evolutionary 

Algorithm (BEA) performed the least efficiently 

with a makespan of 31,534.62, as its adaptive 

mechanisms could not fully offset execution 

delays. 

Conclusion 

The comparative study of scheduling algorithms 

demonstrates that makespan optimization in 

cloud–edge computing is highly dependent on the 

strategy employed. Traditional approaches such as 

Shortest Job Next (SJN) and Round Robin (RR) 

offer simplicity and speed in specific contexts, but 

both suffer from critical limitations: SJN tends to 

overload certain virtual machines while leaving 

others underutilized, whereas RR enforces fairness 

at the expense of efficiency by ignoring task 

heterogeneity. Metaheuristic-based methods such 

as BMO and Bacterial Evolutionary Algorithm 

(BEA) incorporate adaptive and evolutionary 

principles, improving load distribution and energy 

awareness but at the cost of increased makespan 

due to iterative computation. These findings 

highlight the trade-off between execution speed 

and sustainability in resource scheduling. The 

Hybrid BMO-BEA algorithm proved to be the 

most effective, achieving the lowest makespan 

(18,997.35) by synergizing the optimization 

strengths of both BMO and BEA. This 

hybridization not only reduced execution time but 

also enhanced load balancing and energy 

efficiency, making it superior to conventional and 

standalone evolutionary methods. 
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