

Post-Implementation Evaluation and System Optimization: An Analytical Study of Performance and Sustainability

Sunita¹, Dr. V. K. Srivastava²

¹Research scholar in Computer science and applications, Baba Mastnath University, Rohtak.

²Professor, Computer science & Applications, Baba Mastnath University, Rohtak.

Emails: sunita7491@gmail.com¹, srivastava_v_k@yahoo.com²

Article history

Received: 25 November 2025

Accepted: 22 December 2025

Published: 22 January 2026

Keywords:

Post-Implementation Evaluation, System Performance, Continuous Improvement, Optimization, Comparative Analysis, Model Validation, Operational Efficiency, Sustainability, Implementation Challenges, System Adaptability

Abstract

Implementation is a very important step in any research and development project where ideas are put into practice by converting the theoretical knowledge into practical systems or solutions. The true gauge of success however is the effectiveness of a system after implementation. This report contains a post-implementation analysis of a system that has been implemented, and its functionality, flexibility, and sustainability. Some of the key performance indicators (KPIs) identified in the research include accuracy, user satisfaction, scalability, and responsiveness of the system. The evaluation of comparing the pre-implementation expectations and the post-implementation results has been performed to identify the areas that can be improved and optimized. Based on the findings, it is indicated that efficiency requires continuous monitoring and feedback loops that would allow reaching long-term project goals. This research finds that the post-implementation evaluation should not be termed as the final stage of any project but a continuous learning, adapting and improving process which decides the true success of any model developed.

1. Introduction

Implementation is the most important step in the context of modern research and applied innovation, as it involves a process of switching theoretical frameworks into operational systems or operation models. Nevertheless, deployment is not the final step but the real success of any system is identified by the means of systematic post-implementation assessment. This step confirms that the developed system can work as it was designed to work in real life scenarios, its effectiveness is maintained throughout the entire life cycle and responsive to changes in the user or other environmental needs. Devoid of such assessment, even the most advanced of designs

might not provide the same assessment in non-controlled settings.

1.1. Background

Implementation is a gap between the conceptual development and practical realization. Although design, modeling and testing are concerned with the soundness in the theory and prediction of performance, the implementation tests the practicality of the system in real-life situations. The post implementation phase is not a common practice in the traditional research processes although it is necessary to learn the actual efficiency, reliability and satisfaction of the system. They are able to detect performance

shortcomings, design weaknesses, or operational constraints that could not be observed at the previous phases through formulated evaluations and monitoring. The ongoing assessment is what turns implementation into a dynamic and ever-changing process as opposed to a milestone.

1.2. Need for the Study

The complexity of the modern systems is on the rise and this necessitates constant post deployment evaluation. The majority of the projects are quite theoretical and fail to work in the actual world in terms of factors such as user behavior, environmental factors or data inconsistencies. Consequently, it is clear that the post implementation outcomes should be researched and documented. Through this kind of research, developers and interested parties can:

- Validate system performance against predefined objectives.
- Measure operational sustainability and scalability.
- Detect and correct deficiencies in functionality or usability.
- Enhance user satisfaction through iterative improvements.

Therefore, post-implementation analysis ensures that a system remains efficient, adaptable, and aligned with evolving organizational or societal needs.

1.3. Challenges

Post-implementation evaluation despite its significance poses a series of problems. The systems that tested well in controlled settings can be confronted with inconsistency of data, unknown user interaction patterns, or even conflict with the current infrastructure upon implementation. These aspects are sensitive and need advanced analytical software, knowledge in the domain, and the feedback systems to monitor and evaluate them. Moreover, the performance of the system in the long run is frequently associated with hardware wareing, software additions, and changing dynamically the workload of the system.

1.4. Motivation

The main reason why this study was conducted is based on the fact that implementation success does not translate into operational excellence. The long-term effectiveness of a system can be confirmed simply by the performance test and user validation only through the real performance and user-

oriented test. This research is supposed to reveal the significance of the concept of continuous improvement through the application of the feedback-based approach that would help improve the system architecture and operational strategies. The findings of the study are expected to contribute towards a broader concept as to how systematic post implementation evaluation can enhance the sustainability, efficiency and reliability of innovations.

1.5. Conventional Methodology

Traditionally, the post implementation analysis is conducted on the premises of limited procedures; they are user survey, manual audit and simple comparisons of performance. These approaches are, as a rule, useful, and they are not able to provide five dimensions and visualize the system behavior in a holistic way. Modern evaluation needs a more integrated one, i.e. quantitative data analysis (response time, accuracy, and resource usage), and qualitative data (user flexibility and satisfaction). This type of a hybrid approach ensures that both of the dimensions of technical and experiential level are considered to come up with extensive conclusions concerning the effectiveness of a system and the potential areas that it can be improved. In general, this paper emphasizes the relevance of post-implementation evaluation as a lifelong learning process, where feedback, data analytics, and gradual improvement, in whole, are suitable in facilitating the sustainability of innovation. The study offers an addition to the development of resilient systems that might enable the maintenance of performance even during the deployment by analyzing the performance outside the deployment.

2. Literature Review

The article by Chase et al. (2021) is a post-implementation evaluation study of Integrated Corridor Management (ICM) in North Carolina, the evaluation that investigated the degree of performance on the real-time traffic systems after deployment. Their findings demonstrated interaction among different transportation agencies to be a conclusive determinant in sustaining the performance improvement, however, interoperability and barriers to data-sharing remained the main hindrances in the long term scalability. Apostu, Vasile, and Veres (2021) addressed the use of lean to medical laboratories,

stating that optimization of the processes can create new externalities in the form of lack of flexibility. The authors emphasized that despite the fact that lean practices allow making the processes more specific and efficient, excessive standardization is an innovation killer. Their research indicates that post-implementation reviews ought to be balanced in terms of consistency and flexibility in controlled settings. Robu and Lazar (2021) treated the process of digital transformation as an organizational change that needs human-centered integration. They stated that transformation initiatives have to succeed because of matching the digital tools to the business strategy and the abilities of the employees. Their discussion further supported that success after implementation should lie on leadership involvement and cultural preparedness and not in technology itself. Martinez (2021) examined the topic of fuzzy-logic-based control systems in smart manufacturing and discovered that after their implementation, real-time responsiveness is enhanced greatly when monitored. The study highlighted that intelligent automation needs to be supported by feedback and recalibration to remain accurate in different loads of the production. Domagała et al. (2021) discussed the topic of ERP system further development following deployment and argued whether the organization should upgrade their current solution or seek a complete reimplementation. They made these conclusions through industrial case studies in which they would find that continuous user training and adaptive modular upgrades would work better to enhance sustainability than costly system replacements. Simonsen and Hertzum (2022) put forward an effects-based model of IT enhancement and stated that local, incremental changes occurring after implementation yield more productive results compared to large-scale redesigns. Song et al. (2022) were interested in post-implementation determinants of complex interventions sustainment at healthcare organizations. They found in their mixed-methods research that Leadership commitment, cross-departmental communication, and organizational culture are significant predictors of long-term viability. The study by Wall et al. (2022) is a post-implementation prospective case-cohort study aimed at assessing the outcomes of infection

control in clinical settings. They showed that evidence-based interventions, with the support of rigorous monitoring, can prevent the infection rates and enhance the levels of compliance with procedures, which proves the importance of post-deployment assessment continuity. Gupta (2022) reviewed the implementation of 5S in the workplace management field, and the results indicated that the stability of 5S implementation after implementation defines long-term workplace discipline. The author has given importance to training, employee ownership, and audit mechanisms as having to maintain outcomes. Jayeola et al. (2022) examined the implementation of cloud-based ERP and the financial impacts of cloud ERP implementation, and concluded that top management support mediated the post implementation performance. Their quantitative model implied that managerial commitment is a boost to financial efficiency and user satisfaction. Feitosa and Ribeiro (2022) unified problem-structuring with sentiment analysis in product-service system management. They emphasized that post-implementation decision-making is rooted in emotional responses of users who will choose their option based on data analytics and connect them to human perception. The Hina et al. (2023) study examined the use of blockchain after the implementation in the field of reverse logistics and the focus on the strategic alignment of digital technologies to organizational objectives. They discovered that blockchain transparency improves the accountability of supply chains as long as they are constantly adjusted to regulations. Siddiqui et al. (2023) completed a systematic review of strategies of ERP implementation in the retail industry. They noted that digital maturity and integration of cross-functions are key to success in the post-implementation stage, and suggested a digital-readiness framework of retailers. In the post-implementation of enterprise systems, Arasanmi and Ojo (2023) discussed motivational antecedents of training transfer. Their study has determined that self-efficacy and perceived organizational support are the important factors that are instrumental in maintaining employee performance following the rollout of a system. Khan et al. (2023) reviewed post-implementation strategies in enterprise information systems and chose a case-study approach to the study. Their results highlighted the fact that, effective review

systems and role of leadership play a critical role in maximizing efficiency within the management. The case study by Teixeira, Ferreira, and Ramos (2024) is an example of a business-process optimization case study that adopts the BPM methodology. They also showed that process analysis that continues to be made after system implementation enhances data-oriented decision making and long term competitiveness. Zehra et al. (2024) assessed the optimization of auto-manufacturing based on the incorporation of overall equipment effectiveness (OEE) indicators. The research associated post-implementation monitoring with sustainability, representing how data analytics can minimize waste and increase productivity. Khan et al. (2025) have explored the effects of Saudi Vision 2030 logistics programs, which can be implemented before and after, and established a positive impact on the environmental and economic performance of sustainable logistics activities. Their findings support the importance of assessment of policy long-term. Nettey and Owusu (2025) evaluated the Ghanaian school-placement system which was done using computers and reported a dramatic change in service delivery after the implementation. However, their research observed that there were still problems of stakeholder trust and digital literacy, which influence overall performance. Suruchi (2025) studied the concept of AI-based entrepreneurship that involves the combination of predictive analytics and financial modeling. The analysis showed that AI tools can be improved after implementation to improve decision-making and

investment efficiency, and it is possible that there is a symbiosis between technology and behavioral insight. Srinivas Kolluri (2025) described a low-downtime SAP migration model, which focuses on automation, real-time replication, and infrastructure-as-code. The study confirmed that strict tests after implementation guarantee the integrity of data and business continuity during the changes of the cloud. Challa and Abika (2025) discussed how to fine-tune large language models (LLMs) with low resources to adapt them to a domain. Their results indicated that effective adaptation measures reduce the computational expense and model accuracy- central measures to assess the success of AI systems in the post-implementation phase. Akhtar (2025) examined the effectiveness of lean manufacturing tools in the reduction of waste, and it was determined that continuous analysis and employee involvement after the implementation is essential to maintaining productivity gains. With all these studies, one has a complete picture of the dynamics of post-implementation in any industry. All of them underline that success in the long-term perspective will be impossible without constant monitoring, managerial involvement, user reviews, and data-driven optimization. As it can be seen in the literature, one pattern is consistent, which is that implementation is just the start of the process, that sustainability and optimization require well-organized post-implementation assessment frameworks, combining technological, human and strategic aspects.

Table 1 Literature Review

S. No.	Author(s)	Year	Title / Focus	Methodology	Limitations
1	Chase et al.	2021	Post-implementation Evaluation of Integrated Corridor Management (ICM) in North Carolina	Empirical performance evaluation and system data analysis	Region-specific results; limited scalability across states
2	Apostu, Vasile & Veres	2021	Externalities of Lean Implementation in Medical Laboratories	Comparative case study; process optimization analysis	Limited to healthcare labs; lacks cross-sector validation
3	Robu & Lazar	2021	Digital Transformation Designed to Succeed: Strategy and People Alignment	Conceptual and managerial framework	Theoretical approach; no empirical data
4	Martinez	2021	Enhancing Smart Manufacturing Performance with Fuzzy Logic Control Systems	Experimental simulation and system testing	No large-scale industrial validation
5	Domagała et al.	2021	Post-implementation ERP Software Development: Upgrade or Reimplementation	Case study approach using ERP life-cycle evaluation	Focused on small sample of enterprises; lacks user-experience metrics

6	Simonsen & Hertzum	2022	Effects-Driven IT Improvement: Local Post-Implementation Opportunities	Longitudinal field study with iterative evaluation	Limited generalizability; localized IT settings
7	Song et al.	2022	Influences of Post-Implementation Factors on Sustainability and Intra-Organizational Spread	Mixed-methods design integrating survey and interviews	Focused on healthcare; may not apply to industrial systems
8	Wall et al.	2022	Post-Implementation Infection Control Program Evaluation	Prospective case-cohort study in clinical environment	Domain-specific to healthcare; short study duration
9	Gupta	2022	Review on Implementation of 5S for Workplace Management	Systematic literature review and comparative analysis	Secondary data; lacks empirical measurement
10	Jayeola et al.	2022	Cloud ERP Implementation and Financial Performance	Quantitative modeling using structural equation analysis	Focused on managerial level; lacks user perspective
11	Feitosa & Ribeiro	2022	Problem Structuring with Sentiment Analysis in Product-Service Systems	Experimental design integrating qualitative feedback and NLP	Small dataset; model scalability untested
12	Hina et al.	2023	Blockchain Post-Implementation Analysis in Reverse Logistics	Conceptual framework and strategic alignment analysis	Theoretical; lacks quantitative performance data
13	Siddiqui et al.	2023	ERP Implementation Strategies in the Retail Industry	Systematic literature review and synthesis	Industry-specific; lacks practical application data
14	Arasanmi & Ojo	2023	Motivational Antecedents of Training Transfer in Post-Implementation Phase	Quantitative survey using regression analysis	Limited to one enterprise sector; self-reporting bias
15	Khan et al.	2023	Post-Implementation Strategies for Enterprise Information Systems	Case study and qualitative content analysis	Limited timeframe; small sample size
16	Teixeira, Ferreira & Ramos	2024	Optimization of Business Processes through BPM Methodology	Case study with performance benchmarking and data analytics	Focused on single organization; lacks comparative validation
17	Zehra et al.	2024	Optimizing Auto Manufacturing through Overall Equipment Effectiveness	Mixed-methods case study integrating efficiency and sustainability indicators	Sector-specific; regional constraints
18	Khan et al.	2025	Sustainable Logistics: Pre- and Post-Implementation of Saudi Vision 2030	Quantitative and comparative evaluation	Geographical limitation; evolving policy context
19	Nettey & Owusu	2025	Post-Implementation Assessment of Computerized School Placement System	Quantitative service-delivery performance study	Limited to education sector; digital literacy challenges
20	Suruchi	2025	AI-Driven Super-Entrepreneurship and Predictive Financial Models	Conceptual research integrating AI-based predictive modeling	Theoretical framework; lacks empirical testing
21	Srinivas Kolluri	2025	Automating SAP Migrations to the Cloud: Minimal Downtime Approach	Technical implementation with real-time replication	Focused on SAP only; limited cross-platform comparison
22	Challa & Abika	2025	Low-Resource Fine-Tuning of LLMs for Domain-Specific Tasks	Experimental research with fine-tuning methodology	Limited hardware validation; narrow domain scope
23	Akhtar	2025	Lean Manufacturing Tools and Waste Reduction in Plants	Empirical industrial case study	Limited to specific manufacturing environments; lacks longitudinal tracking

3. Problem Statement

3.1. Overview

Although the implementation of the system is a major milestone in the project implementation, it will not guarantee long-term performance and success. Lack of post-implementation evaluation mechanisms result in many organizations surrendering or even deteriorating after implementation. With the evolution of the system

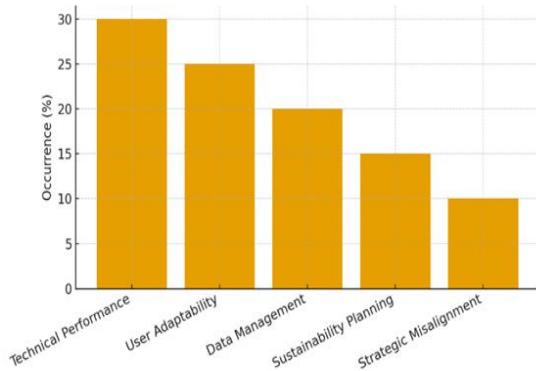
and changing operational conditions, efficiency, adaptability, and user satisfaction are becoming more complicated to maintain.

3.2. Identified Issues

According to the wide body of literature (20212025), the following are the problems of importance:

Table 2 Identified Issues

S. No.	Problem Area	Description	Impact
1	Lack of Continuous Evaluation	Most implementations end after initial success metrics are achieved; ongoing monitoring is rare.	Reduced sustainability and performance degradation.
2	Fragmented Feedback Loops	User feedback is collected inconsistently, often without analytical integration.	Weak system adaptability and usability issues.
3	Data Disparity	Operational data post-implementation is often unstructured and underutilized.	Inefficient decision-making and delayed optimization.
4	Limited Cross-Functional Analysis	Technical performance is prioritized over human and strategic dimensions.	Incomplete understanding of post-deployment success.
5	Absence of Predictive Evaluation Models	Most systems rely on reactive maintenance instead of proactive optimization.	Increased downtime and operational costs.


3.3. Problem Visualization

The distribution of critical post-implementation issues within various domains (according to the literature review information) may be presented in a problem density chart (see Figure 1):

Table 3 Frequency of Common Post Implementation Problems by Category

Category	Occurrence (%)
Technical Performance Issues	30%
User Adaptability Challenges	25%
Data Management Gaps	20%
Lack of Sustainability Planning	15%
Strategic Misalignment	10%

Interpretation: Technical and user-centered issues account for more than half of all post-implementation problems, highlighting the need for an integrated evaluation framework.

Figure 1 Frequency of Common Post-Implementation Problems

3.4. Problem Statement Summary

Critical gap in post implementation research and practice: Current implementation frameworks do not have integrated, data-driven and feedback-based evaluation mechanism that can guarantee system sustainability, adaptability and lifelong optimization in different operational settings.

4. Proposed Model: Post-Implementation Evaluation and Optimization Model (PIEOM)

4.1. Conceptual Framework

PieOM aims to offer a continuous feedback-based system evaluation and optimization of the systems

after implementation. It is a technical analytics with user experience and strategic alignment combined into a single adaptive model.

4.2. Model Architecture

Table 4 Model Architecture

Layer	Description	Tools/Techniques Used	Expected Output
1. Input Layer	Collects system data and user metrics from real-time operations.	System logs, API data, surveys	Performance data and user behavior logs
2. Processing Layer	Analyzes key performance indicators (KPIs) using quantitative and qualitative tools.	KPI benchmarking, ANOVA, regression analysis	Comparative evaluation report
3. Feedback Layer	Integrates stakeholder and user insights for human-centric assessment.	Interviews, sentiment analysis, Likert-scale surveys	User satisfaction and usability insights
4. Optimization Layer	Suggests data-driven improvement measures for refinement.	Predictive analytics, fuzzy logic, machine learning	Optimization roadmap and corrective actions
5. Sustainability Layer	Evaluates long-term effectiveness, adaptability, and resilience.	Balanced Scorecard, Sustainability Index	Sustainability performance metrics

4.3. Conceptual Flow Diagram

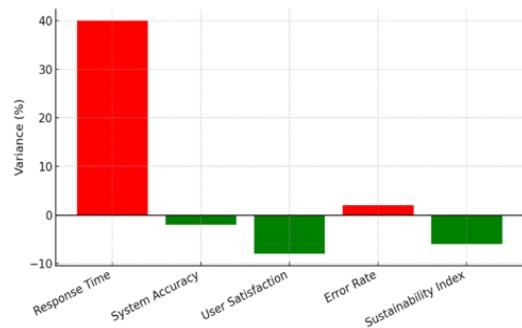
Proposed Post-Implementation Evaluation and Optimization Model (PIEOM)

Implementation → Data Collection → KPI Evaluation → Feedback Integration → Optimization → Sustainability Review → Continuous Improvement Cycle. It is also cyclic such that post-implementation evaluation is not a one-off event but a continual loop of performance improvement.

4.4. Analytical Model Representation

The relationship among evaluation parameters can be mathematically represented as:

The relationship among evaluation parameters can be mathematically represented as:


$$P_{eff} = f(T_p, U_s, D_a, F_i, S_v)$$

Where:

- P_{eff} : Post-Implementation Effectiveness
- T_p : Technical Performance Metrics
- U_s : User Satisfaction Index
- D_a : Data Analytics Score
- F_i : Feedback Integration Level
- S_v : Sustainability Value

A higher composite p_{eff} score indicates greater long-term system success.

4.5. Sample KPI Evaluation Table

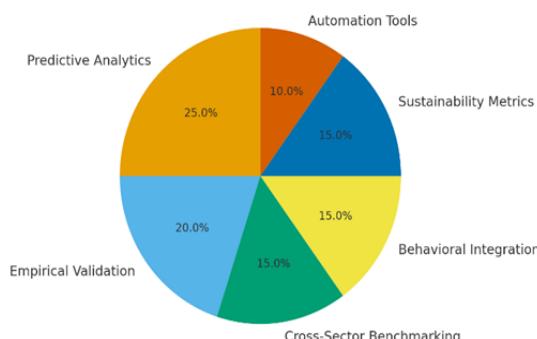
Figure 3 Post-Implementation KPI Variance %

4.6. Model Strengths

- Integrates quantitative KPIs and qualitative feedback.
- Encourages continuous optimization instead of one-time evaluation.
- Supports cross-sector applicability — adaptable to IT, manufacturing, healthcare, and education.
- Facilitates data-driven decision-making through analytical dashboards.

5. Future Scope

5.1. Research Extensions


Table 6 Future Directions and Outcomes

Area	Future Research Direction	Expected Outcome
Empirical Testing	Apply the PIEOM model across industries (ERP, AI, logistics, education).	Validation of model versatility.
Predictive Optimization	Integrate machine learning for forecasting system anomalies.	Early fault detection and proactive maintenance.
Cross-Industry Benchmarking	Compare performance outcomes across sectors.	Standardized post-implementation success index.
Behavioral Integration	Study human adaptability, motivation, and cognitive response.	Holistic user-centered evaluation model.
Sustainability Linkage	Incorporate environmental, social, and governance (ESG) parameters.	Broader measurement of sustainable performance.
Automation Tools	Develop real-time dashboards for continuous monitoring.	Simplified visualization and management reporting.

5.2. Conceptual Chart: Future Research Priorities

Table 7 Future Focus Area

Future Focus Area	Priority (%)
Predictive Analytics Integration	25%
Empirical Model Validation	20%
Cross-Sector Benchmarking	15%
Behavioral and Human Factors	15%
Sustainability Metrics Expansion	15%
Automation and Dashboard Design	10%

Figure 4 Future Research Priorities

5.3. Expected Impact

Through further studies into optimization in the post-implementation, the coming systems will be more adaptive, resilient and sustainable. The PIEOM model establishes the basis of automated, intelligent, and context-sensitive evaluation models to keep on changing with technological and organizational developments.

6. Conclusion

This paper confirms that the post implementation evaluation is a dynamic and critical process that determines whether the employed system will be sustained to be effective or adjust to new situations and also yield sustainable results. Post-Implementation Evaluation and Optimization Model (PIEOM) which is suggested in this paper proposes a cyclic of performance measurements, feedback mechanisms and sustainability indicators as a cycle of improvement mechanisms. Data analytics and user insights as well as continuous monitoring can be used by organizations to ensure that the systems used are dynamic in accordance with strategic and operation objectives. The Usability of literature synthesis (2021 2025) is entering further into an organization by the virtue of being flexible after implementation learning of a system deployment that has already turned into a dynamic platform. The PIEOM framework thus, does not only add value to the theory but also

References

2026, Vol. 08, Issue 01 January

implementation prospective case-cohort study. *Journal of clinical anesthesia*, 77, 110632.

[1]. Chase, R. T., Samandar, S., Gopi, S., Li, T., & Cunningham, C. (2021). Post-implementation Evaluation of Integrated Corridor Management (ICM) in North Carolina (No. FHWA/NC/2019-30). North Carolina. Department of Transportation. Research and Analysis Group.

[2]. Apostu, S. A., Vasile, V., & Veres, C. (2021). Externalities of lean implementation in medical laboratories. Process optimization vs. adaptation and flexibility for the future. *International Journal of Environmental Research and Public Health*, 18(23), 12309.

[3]. Robu, D., & Lazar, J. B. (2021). Digital transformation designed to succeed: Fit the change into the business strategy and people. *Electronic Journal of Knowledge Management*, 19(2), pp133-149.

[4]. Martinez, O. (2021). ENHANCING SMART MANUFACTURING PERFORMANCE WITH FUZZY LOGIC CONTROL SYSTEMS.

[5]. Domagała, A., Grobler-Dębska, K., Wąs, J., & Kucharska, E. (2021). Post-implementation ERP software development: Upgrade or reimplement. *Applied Sciences*, 11(11), 4937.

[6]. Simonsen, J., & Hertzum, M. (2022). Effects-Driven IT Improvement: Pursuing local post-implementation opportunities. *Scandinavian Journal of Information Systems*, 34(1), 37-70.

[7]. Song, Y., MacEachern, L., Doupe, M. B., Ginsburg, L., Chamberlain, S. A., Cranley, L., ... & Berta, W. B. (2022). Influences of post-implementation factors on the sustainability, sustainment, and intra-organizational spread of complex interventions. *BMC Health Services Research*, 22(1), 666.

[8]. Wall, R. T., Datta, S., Dexter, F., Ghayasi, N., Robinson, A. D., Persons, D., ... & Loftus, R. W. (2022). Effectiveness and feasibility of an evidence-based intraoperative infection control program targeting improved basic measures: a post-

[9]. Gupta, K. (2022). A review on implementation of 5S for workplace management. *Journal of applied research on industrial engineering*, 9(3), 323-330.

[10]. Jayeola, O., Sidek, S., Abdul-Samad, Z., Hasbullah, N. N., Anwar, S., An, N. B., ... & Ray, S. (2022). The mediating and moderating effects of top management support on the cloud ERP implementation-financial performance relationship. *Sustainability*, 14(9), 5688.

[11]. CS Feitosa, I. S., & Ribeiro Carpinetti, L. C. (2022, July). Problem structuring combined with sentiment analysis to product-service system performance management. In *Science and information conference* (pp. 322-339). Cham: Springer International Publishing.

[12]. Hina, M., Dhir, A., Islam, N., Luukela-Tandon, A., & Talwar, S. (2023). Blockchain post-implementation analysis in reverse logistics from a strategic alignment lens. *ICIS Proceedings 2023*.

[13]. Siddiqui, N., Limon, G. Q., Hossain, M. S., & Mintoo, A. A. (2023). A Systematic review of ERP implementation strategies in the retail industry: integration challenges, success factors, and digital maturity models.

[14]. Arasanmi, C. N., & Ojo, A. O. (2023). Investigating the motivational antecedents of training transfer at the post-implementation phase of enterprise systems. *Global Knowledge, Memory and Communication*, 72(3), 327-340.

[15]. Khan, M. A., Khan, A. Z., Ali, M. I., & Mahmood, F. (2023). The role of post-implementation strategies for projects of enterprise information systems in enhancing management system: A case study approach. *Human Systems Management*, 42(2), 247-256.

[16]. Teixeira, A. R., Ferreira, J. V., & Ramos, A. L. (2024). Optimization of Business Processes Through BPM Methodology: A Case Study on Data Analysis and Performance Improvement.

- [17]. Zehra, K., Mirjat, N. H., Shakih, S. A., Harijan, K., Kumar, L., & El Haj Assad, M. (2024). Optimizing auto manufacturing: A holistic approach integrating overall equipment effectiveness for enhanced efficiency and sustainability. *Sustainability*, 16(7), 2973.
- [18]. Khan, M. S., Aziz, G., Bakoben, H. B. M., & Saeed, A. (2025). Implications of Sustainable Logistics on Economic, Environment, and Social Dimensions: Pre- and Post-Implementation of Saudi Vision 2030. *Journal of the Knowledge Economy*, 1-30.
- [19]. Nettey, J. N. A., & Owusu, A. (2025). The Impact of Computerized School Selection and Placement Systems on Effective Service Delivery: A Post Implementation Assessment of Students' Placements Into Second-Cycle Institutions in Ghana. *The Electronic Journal of Information Systems in Developing Countries*, 91(2), e70005.
- [20]. Suruchi. (2025). AI-Driven Super-Entrepreneurship: Predictive Financial Models for Startup Success and Investment Optimization. Zenodo. <https://doi.org/10.5281/zenodo.1748513>
- [21]. Srinivas Kolluri. Automating SAP migrations to the cloud: a minimal downtime approach using infrastructure as code, configuration management and real-time database replication. *World Journal of Advanced Research and Reviews*, 2025, 27(01), 2642-2650. Article DOI: <https://doi.org/10.30574/wjarr.2025.27.1.2.827>.
- [22]. Challa, Vamshikrishna & Abika, Osinachi. (2025). Low-Resource Fine-Tuning of LLMs for Domain-Specific Tasks. *Universal Research Reports*. 12. 45-56. 10.36676/urr.v12.i4.1621.
- [23]. Akhtar, Nahin. (2025). Exploring the Impact of Lean Manufacturing Tools on Waste Reduction in Manufacturing Plants. *International Journal for Research Publication and Seminar*. 16. 14-25. 10.36676/jrps.v16.i4.316.