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Abstract 

In this article, we formulate an entropy stable scheme for nonlinear degenerate convection diffusion 

equation with viscous terms in non-conservative formulations. Here in we extend the S.Jerez idea of first 

order entropy stable convection scheme for semi discrete scheme in to fourth order scheme using finite 

central difference scheme. Major advantage of this work is fourth order accuracy of the solution and fixed 

numerical diffusion term which can provide the non- oscillatory solution. Finally, few computational 

analyses are given to shown the accuracy of entropy stable scheme for degenerate parabolic equations. 
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1. Introduction: 

In this section we discussed some basic definitions 

and results. 

1.1 Notations of difference operator 

We are discussing some general notations and 

basic formulas from [9]. The central difference 

with respect to t are defined by 
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Similarly, with respect tox is 
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The second central difference is defined by
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Here we have 
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We need derive fourth order accurate aproximation 

to first and second derivative with respect tox 
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Where, 

),(2

2

2

hO
x

w





                                           (8) 

),(4

4

4

hO
x

w





                                           (9) 

Rewrite above equation (7) by 
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using the Binomial expansion 
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Our main motivation is to introduced a fourth 

order non-oscillatory entropy stable scheme for 

non-degenerate convection diffusion equation. 

Next section 1.1 discussed the basic results of 

fourth order scheme. The present article is 

organized in the following way. Some preliminary 

results and definitions are given in sections 1.1 and 

2. The fourth order entropy stable scheme and new 

limiter are discussed in sections 3 and 3.1. 

Numerical results of proposed framework 

discussed in section 3.1 and 4. 

1.2  Forth order scheme for degenerate equation 

Let us consider the following equation (11) with 

non-conservative diffusion term in one 

Dimensional space. 
 R  R t)(x,,)(k(w)w=f(w) + w xxxt

(x).w=w(x,0) 0                                             
(11) 

Where fbe a nonlinear flux function of conserved 

vector quantity  

 R R  R : t)w(x, n 
and  R k(w) N×N is a 

positive semidefinite diffusion matrix defined in 

Ω. The diffusion term vanish in some sub spatial 

interval. For simplicity we denote 𝑤 =  𝑤(𝑥, 𝑡). 

This type of system represented by in porous 

media flow and two phase flow model [1-5]. 

If 
𝑑𝐾

𝑑𝑤
= 𝑘 then equation (11) will be the following 

conservative form, 

xx,xt K(w)=f(w) + w
                                     (12)  

Due to this degeneracy of viscous term near shock 

may have solution in hyperbolic-parabolic 

dynamic problem. 

Let us discretized the equation (11) using central 

difference operator,
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Using Taylor series expansion, approximate first 

derivative by fourth order approximation in h. 

Similarly,
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By the product rule, R.H.S of the (14) is the 

following form. Let us consider 
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We replaced the value of L by first order forward 

difference operator for representing the first 

derivative. Substitute the equation (16) in to (14), 

then we get a fourth order scheme. Replace the 

notation 

  = ∆𝑥. The numerical scheme will be
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𝐹  𝑗+1/2 = (−
1

12
𝐹𝑗+2 +

7

12
𝐹𝑗+1 +

7

12
𝐹𝑗

−
1

12
𝐹𝑗+1) 

2. Entropy stable scheme for degenerate 

convection diffusion equation 

2.1. Basic results 
Let us consider (12) with K → 0, then the equation 

have hyperbolic in nature. The main challenge for 

solving such type of equation is the shock wave 

formation near discontinuities of solution profile 
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of nonlinear flux. Even for smooth initial data, the 

solution profile may have shock formation with 

nonlinear flux function. So we can use the weak 

formation in that situation. It is well known that 

weak solution do not converge to physically 

relevant unique solution. Lack of uniqueness of 

numerical solution must be enforced additional 

criteria, we call it as entropy condition. Next we 

discuss the entropy stability of the scheme (18). 

The accuracy and efficiency of entropy stable 

methods and higher order of accuracy discussed in 

[2, 3, 4] and discontinuous Galerkin methods in 

[5]. The entropy inequality for a degenerate 

parabolic problem Our main motivation of the 

study is to introduced the higher order entropy 

stable scheme. Entropy condition for system of 

equations (12) is defined in [6] Consider the three 

tuple (η,q,r) of functions from the set Ω to R, with 

strictly convex such that  

𝑞𝑤
𝑇 = 𝜂𝑤

𝑇 𝑓𝑤 ,                                                 (19) 

𝑟𝑤
𝑇 = 𝜂𝑤

𝑇 𝑑𝑘

𝑑𝑤
                                                  (20) 

𝑤𝑇𝜂𝑤𝑤
𝑑𝐾

𝑑𝑤
≥ 0,𝑤 ∈ Ω,                                (21) 

where the subscript w denotes the Hessian 

function. Recall that η = η(w) and q = q(w) are the 

entropy flux function, respectively, and the new 

function r = r(w) is named the diffusion entropy 

flux. Since η is strictly convex and v = ηwis the 

entropy variable. Silvia Jerez Et.al. prove that 

degenerate form equation (12) is satisfy 

η(w)t + q(w)x − r(w)xx ≤ 0, (22) 

The equation(12) said to be entropy stable if there 

exist two numerical entropy fluxes Qj+1/2 and  

consistent with q and rxwhich satisfies the 

following condition (see [6]) 
𝑑

𝑑𝑡
𝜂 𝑤𝑗   𝑡 +

1

∆𝑥
 𝑄

𝑗+
1

2

− 𝑄
𝑗−

1

2

 − 

1

∆𝑥
 𝑟
𝑗+

1

2

′ − 𝑟
𝑗−

1

2

′  ≤ 0                                          (23) 

2.1.1. Entropy stable scheme with Entropy 

conservative flux 

Let us consider the Lefloch formula for higher 

order flux, 

𝐹 𝑗+1/2
2𝑝 =  𝛼𝑟

𝑝  𝐹( 𝑟−1
𝑠=0 𝑤𝑗−𝑠,𝑤𝑗−𝑠+𝑟)𝑝

𝑟=1      (24). 

Theorem 2.1. (see[ [3], Theorem 4.4]). For p ∈N, 

assume that  solve the p linear equations 

 

 𝑟𝛼𝑟
𝑝 = 1, 𝑖2𝑠−1

𝑝

𝑖=1

𝑝

𝑟=1

(𝑠 = 2,…𝑝,   )      (25) 

then F 2p  th-order accurate, in the sense that for 

sufficiently smooth solution w and entropy 

conservative by following discrete entropy 

equality. 

𝑄 𝑗+1/2
2𝑝 =  𝛼𝑟

𝑝  𝑄( 𝑟−1
𝑠=0 𝑤𝑗−𝑠,𝑤𝑗−𝑠+𝑟)𝑝

𝑟=1  ,    (26) 

Substitute p = 2 in entropy conservative 

flux  

𝐹 𝑗+1/2
4 =  𝛼𝑟

𝑝
 𝐹( 
𝑟−1

𝑠=0

𝑤𝑗−𝑠,𝑤𝑗−𝑠+𝑟)

2

𝑟=1

 

                                                             (27) 

and 

𝐹
𝑗+

1

2

  𝑤𝑗 ,𝑤𝑗+1 =
𝑓 𝑤𝑗  + 𝑓(𝑤𝑗+1)

2
 

 

Which imply that (28) 

𝐹  𝑗+1/2 = (−
1

12
𝐹𝑗+2 +

7

12
𝐹𝑗+1 +

7

12
𝐹𝑗 −

1

12
𝐹𝑗+1),                                                                           

(28) 

The two-point finite difference scheme,

)]][[]][[(
1

)(
1

),(

2/1

~

2/12/1

~

2/12

2/1

~

2/1

~

2/1

~
















jjjj

jjj

wkwk
x

FFF
x

txw
t

(29) 

is entropy stable provided the numerical viscosity 

matrix𝑘𝑗+1/2 satisfies the following conditions 

𝑣 𝑗+1/2
𝑇 𝑘𝑗+1/2 𝑤 𝑗+

1

2

=  𝑟 𝑗+1/2 .    (30) 

And 𝑣 𝑗+1/2
𝑇 𝑘𝑗+1/2 𝑤 𝑗+1/2 ≥ 0. (31) 

proved in [6]. Here Jerez used entropy 

conservative flux, but due to the diffusion term 

numerical scheme become entropy stable provided 

k = 0.Suppose if k = 0 then scheme (29) will not be 

entropy stable. It satisfies only entropy 

conservative condition. In that case near 

discontinuity solution profile may exhibit Gibb’s 

phenomenon near discontinuity region. To prevent 

this phenomenon, we need to add extra numerical 

diffusion term. Jerez modified the scheme for 

entropy stability that we discussed in next 

subsection.
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2.1.2. Entropy stable scheme with Entropy 

stable flux 

Consider the fourth order entropy stable flux 

defined in [2]. If K = 0 the numerical scheme 

equation will be 
𝜕

𝜕𝑡
𝑤 𝑥, 𝑡 = −

1

∆𝑥
(𝐹

𝑗+
1

2

− 𝐹𝑗−1/2),(32) 

replace Fj+1/2 by entropy stable flux𝐹𝑗+1/2
4 , 

𝐹𝑗+1/2
4 = 𝐹 𝑗+1/2 −

1

2
𝐷
𝑗+

1

2

  𝑣  
𝑗+

1

2

(33) 

Here D is positive definite matrix. The scheme 
(32) using flux (33) is entropy stable by Cheng 
theorem 3.3 in [7] and results in [2]. 
Under the hypothesis of the theorem 3.2 in [6] the 
finite the entropy stability of the difference 
scheme, 

𝜕

𝜕𝑡
𝑤 𝑥, 𝑡 = −

1

∆𝑥
 𝐹

𝑗+
1

2

− 𝐹
𝑗−

1

2

 +

1

∆𝑥2
 𝑘

𝑗+
1

2

  𝑤  
𝑗+

1

2

− 𝑘
𝑗−

1

2

  𝑤  
𝑗−

1

2

 +

𝜀

∆𝑥2 (  𝑤  
𝑗+

1

2

−   𝑤  
𝑗−

1

2
)
 ,      (34) 

Where𝜀>0 is proved by Jerez. 

3. Fourth order entropy stable scheme for non-

degenerate convection diffusion equation 

We consider fourth order entropy stable scheme 

for non-conservative formulation of diffusion term. 

For generating entropy stable fourth order scheme 

we need a central forth order scheme for 

convection diffusion equation with non-

conservative diffusion term. 

Substitute the flux (33) to the two point scheme 

(29) is modified to, 
𝜕

𝜕𝑡
𝑤 𝑥, 𝑡 = −

1

∆𝑥
 𝐹

𝑗+
1

2

4 − 𝐹
𝑗−

1

2

4  +

𝑣𝑗
𝑇

∆𝑥2 (𝑘 
𝑗+

1

2

− 𝑘 
𝑗−

1

2

)(35) 

Remark 3.1. The entropy stable scheme (34) by 

Jerez we discussed, but in that scheme diffusion 

term not fixed for PDE, it may vary due to the 

varying . In this article we used sign stable fourth 

reconstruction for diffusion term. ie., sign([[v]]) = 

sign(<< v >>) where 

 

𝑠𝑖𝑔𝑛 𝑥 =  
1, 𝑖𝑓 0 ≤ 𝑥 ≤ 1 
−1,  𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒

        (36) 

 

Theorem 3.1. The scheme (35) is entropy stable if 

it satisfies following condition. The numerical flux 

Fj+1/2 consistent with f and satisfies 

[v]j+1/2Fj+1/2 = [φ]j+1/2 and the numerical viscosity 

matrix kj+1/2 verifies 

𝑣 
𝑗+

1

2

𝑘
𝑗+

1

2

=  𝑟′ 𝑗+1/2, (37) 

and 

 𝑣 
𝑗+

1

2

𝑇 𝑘 𝑗+1/2 ≥ 0(38) 

.  
Proof. Multiply vi by both side of equation (12) 

 

𝑑

𝑑𝑡
𝜂 𝑤 𝑗 = 𝑣𝑗

𝑇 1

∆𝑥
 𝐹 

𝑗+
1

2

− 𝐹 
𝑗−

1

2

 +
𝑣𝑗
𝑇

∆𝑥2
(  𝑘   

𝑗+
1

2

−

  𝑘   
𝑗−

1

2

)                                                    (39) 

𝑣𝑗
𝑇 1

∆𝑥
 𝐹 

𝑗+
1

2

− 𝐹 
𝑗−

1

2

 = 𝑣𝑗+1/2
𝑇 1

∆𝑥
𝐹 
𝑗+

1

2

−

𝑣
𝑗−

1

2

𝑇 1

∆𝑥
𝐹 
𝑗−

1

2

−

1

2
 [[𝑣]]

𝑗+/2

𝑇
𝐹 
𝑗+

1

2

−

[[𝑣]]
𝑗−/2

𝑇
𝐹 
𝑗−

1

2
                                                  (40) 

The numerical flux𝑄𝑗+1/2is defined by 

𝑄
𝑗+

1

2
=
𝑞
𝑗+

1

2

+ 𝑣
𝑗+

1

2

𝐹
𝑗+

1

2

,                               (41) 

 

Similarly𝑣𝑗
𝑇𝑘𝑗+1/2 = 𝑣𝑗

𝑇(
−1

12
𝑘
𝑗+

1

2

  𝑤  
𝑗+

3

2

−

7

12
𝑘𝑗+1  𝑤  

𝑗+
1
2

+
7

12
𝑘
𝑗−

1

2

−
1

12
𝑘𝑗−1  𝑤  𝑗−3/2

  

𝑣𝑗
𝑇𝑘 

𝑗+
1

2

= 𝑣𝑗
𝑇(

−1

12
𝑘𝑗+2  𝑤  𝑗+

3

2

−
7

12
𝑘𝑗+1  𝑤  𝑗+

1

2

+

7

12
𝑘𝑗   𝑤  𝑗−1

2

−
1

12
𝑘𝑗−1  𝑤  𝑗−3/2

  ,         (42) 

𝑣𝑗
𝑇  𝑘 

𝑗+
1

2

− 𝑘 
𝑗−

1

2

 = 𝑣
𝑗+

1

2

𝑇
𝑘 
𝑗+

1

2

− 𝑣
𝑗−

1

2

𝑇
𝑘 
𝑗−

1

2

−

1

2
(  𝑣  

𝑗+
1

2

𝑘 
𝑗+

1

2

−   𝑣  
𝑗−

1

2

𝑘 
𝑗−

1

2

) ,         (43) 

Substituting (43) and (41) in (39) then, 

𝑑

𝑑𝑡
𝜂 𝑤𝑗  +

1

∆𝑥
 𝑄 

𝑗+
1

2

− 𝑄 
𝑗−

1

2

 

−
1

∆𝑥
   𝑟  

𝑗+
1

2

−   𝑟  
𝑗−

1

2

 

= −
1

2
[  𝑣  

𝑗+
1

2

𝑇
𝑘 
𝑗+

1

2

−   𝑣  
𝑗−1/2

𝑘 
𝑗−

1

2

≤ 0 

After adding extra numerical diffusion term the 

equation (35) will be
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Where the flux  is 

entropy stable flux 

Theorem 3.2. A scheme with numerical flux 

equation (44) is entropy stable with numerical 

entropy flux given by 

𝑞
𝑗+

1

2

= 𝑞 𝑗+1/2
4 + 𝑣𝑗+1/2𝐷𝑗+1/2 << 𝑣 >>𝑗+1/2 (45) 

is entropy stable with entropy flux is defined by 

𝑄
𝑗+

1

2

4 = 𝑄 𝑗+1/2 −
1

2
𝑣
𝑗+

1

2

𝐷
𝑗+

1

2

  𝑣  
𝑗+1/2

 ,(46) 

and𝑟 
𝑗+

1

2

=
1

∆𝑥
𝑣𝑗+1/2𝑘 𝑗+1/2     (47) 

with ≪ 𝑣 ≫
𝑗+

1

2

= 𝛽
𝑗+

1

2

[[𝑣]]𝑗+1/2,  . 

Existing tools for making higher order 

reconstruction is WENO-Z and JS-WENO e.t.c. 

But generally, it is not sign stable. Here we 

reconstruct. 

[[v]]j+1/2 by fifth order WENO-Z method[8], but it 

is not sign stable. So we introduced limiter for 

preserving the sign stable. 

3.1. Limiter for sign stability 

In this article for reconstructing  we used 

WENO-Z scheme, but it is not sign stable. So, we 

used by following way 

𝜙 𝑖 =  
1, 𝑖𝑓 0 ≤ 𝑠 𝑗 ≤ 1

0,  𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒
 (48)      

where s(j) is the numerical jump at x(j) ie., 

𝑠 𝑖 =
𝑤𝑗+1− 𝑤𝑗

𝑣𝑗+1−
+ 𝑣𝑗

−                                              (49) 

provided  𝑣𝑗+1
+ − 𝑣𝑗

− ≠ 0 otherwise s(i) = 0. 

Here we consider the general Courant-Friedrich- 

Lewy(CFL) condition for parabolic equations is 

𝐶𝐹𝐿 = max 𝑓𝑢  
∆𝑡

∆𝑥
+ 2 max 𝑘 

∆𝑡

∆𝑥2 < 1,       (50) 

4.Test problems 

Consider the equation 

𝑤𝑡 +  
𝑤2

2
 
𝑥

= 𝐾 𝑤 𝑥𝑥 ,  𝑥, 𝑡 ∈  −2,2 × [0,𝑇] 

(56) 

where w ∈ [0,∞] and diffusion matrix is defined as 

K(w) = µw
2
, and K

0
(w) = k(w). Based on the 

known entropy flux pair (η,g) for the  

burger equation. Entropy 3-tuple (η(w),g(w),r(w)) 

=  is satisfied equation 1.11 in [6], 

where µ = 0.01. Let us consider entropy stable 

scheme for that an entropy conservative numerical 

flux is consider. wj
2
) 

and a numerical viscosity matrix satisfying 

theorem 3.4 in [6] by 

𝑘𝑗+1/2

=  

1, 𝑖𝑓 𝑤𝑗 ,𝑤𝑗+1=0

𝜇
4

3

𝑤𝑗
2 + 𝑤𝑗𝑤𝑗+1 + 𝑤𝑗+1 

2

𝑤𝑗 + 𝑤𝑗+1
,  𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒

  

Initial condition is x ∈ [−2,2] 

𝑤0(𝑥) =  
1, 𝑖𝑓 − 0.5 ≤ 𝑥 ≤ 0.5 

0,  𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒
             (51)   

 

For the computation we considering N = 1200for 

reference solution also. Mainly the following 

numerical methods are used for comparison 

ES1 flux is entropy conservative, nonconservative 

discretization of source term, numerical scheme is 

29. ES2 flux is entropy stable, non-conservative 

discretization of source term using the numerical 

scheme is 34. ES3 Fourth order entropy stable 

scheme. All test problem using ES3 are SSP-RK4 

method used for solving differential equations. 

Numerical simulations of ES1 and ES2 are 

obtained combining an entropystable spatial 

discretization with a TVD-RK2 time stepping. The 

errors and convergence rate of ES1 and ES2 are 

shown in [6-9]. It is first order accurate. If µ → 0 

the PDE have hyperbolic in nature. So spurious 

oscillation in solution profile will produce the 

numerical scheme near discontinuity. From figure 

1 we can understand after adding extra diffusion, 

oscillation removed. Next we are discussing the 

numerical result for non-oscillatory higher order 

entropy stable scheme. 

5. Test problems for fourth order non-

oscillatory entropy stable scheme 
Recalling the equation (12). If µ tends to zero in 

(58) tends to hyperbolic case. Entropy 

conservative methods capture appearance of 

propagation of shock wave correctly but may 

produce strong oscillations in near shock region. In 

order to reduce the oscillation in [6] add some 

viscosity term. This work useful to capture 

correctly the non-classical shocks due to parabolic 

and hyperbolic interaction. For detailed reference 

see [6]. 
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𝑤𝑡 +  
𝑤2

2
 
𝑥

= 𝐾 𝑤 𝑥𝑥 ,  𝑥, 𝑡 ∈  −2,2 × [0,𝑇] 

                                                                     (52) 

where w ∈ [0,∞] and diffusion matrix is defined 

as K(w) = µw
2
, and K

0
(w) = k(w). 

 

Figure 1: Solution for first order entropy conservative 

flux with 100 points with initial condition(51) 

Figure 2: Solution for first order entropy stable flux 

with 100 points with initial condition(51) 

Example 5.1. [6] Let us consider the equation 

wt+(w
2
)x = (K(w)wx)x,(x,t) ∈ [−1,1]×[0,1],w ∈ Ω 

                                                                        (53) 

where Ω = [0,+∞]. 

with initial condition is defined by, 

w0(x) =  
 1 − x2 2, if − 1 ≤ x ≤ 1 

0,  𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒
        (54)   

, x ∈  −2,2 . Entropy conservative numerical flux 

is defined by 

F
j+

1

2

4 = F 
j+

1

2

−
1

2
D

j+
1

2

  v  
j+1/2

                              (55)  

where  is maximum of first derivative of f and 

v is entropy variable. Numerical simulations of 

ES3 are obtained combining an entropystable 

spatial discretization with a TVD-RK4 time 

stepping. For that, we compute a reference solution 

with µ = 0.1 using the ES3 scheme with N = 1200 

grid values. 

Figure 3: Numerical solution using ES3 with initial 

condition (54) and N=100, µ=0.01, CFL=0.9 

Figure 4: Numerical solution using ES3 with 

initial condition (60) and N=100, µ=0.01, 

CFL=0.9  
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Example 5.2. Here we consider the equation 

𝑤𝑡 +  
𝑤2

2
 
𝑥

= 𝐾 𝑤 𝑥𝑥 ,  𝑥, 𝑡 ∈  −2,2 ×

 0,𝑇                                                         (56) 

with initial condition  

𝑤0(𝑥)

=  
1, 𝑖𝑓 − 0.5 ≤ 𝑥 ≤ 0.5 

0,  𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒
                                                                          (57)   

 
Figure 5: Numerical solution using ES3 with 

initial condition (54) and N=200, µ=0.01, CFL=0.5 

 
Figure 6: Numerical solution using ES3 with 

N=200, µ=0.00, CFL=0. 

 

We used ES3 scheme with CFL=0.5, and Final 

time T = 1; Rate of convergence and accuracy table 

of the problem 57 is given. 

Conclusion 
Herein we introduce the concept of fourth order 

entropy stable scheme for degenerate convection 

equation and new limiter for preserving sign 

stability for numerical diffusion term. Using this 

limiter we can use all type of higher order WENO 

for reconstruction of diffusion term, Because of 

this we can generate a higher order nonoscillatory 

entropy stable scheme. 
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