www.rspsciencehub.com Volume 03 Issue 07S July 2021

INTERNATIONAL RESEARCH JOURNAL ON
ADVANCED SCIENCE HUB

RSP SCIENCE HUB

(The Hub of Research Ideas)
Available online at www.rspsciencehub.com

e-ISSN : 2582 - 4376
Open Access

Special Issue of First International Conference on Social Work, Science & Technology (ICSST
2021)

Design and Analysis of Winglets on GOE767-il Aerofoil

Sayuj G K', Rishabh Almel?, Rohan G2, Shashank Naik* , Chandru A®

L234Department of Mechanical Engineering, PESIT — Bangalore South Campus, Karantaka, India.
*Assistant Professor, Dept. of Mechanical Engineering, PES University, Karantaka, India.
sayujgovind25@gmail.com’

Abstract

Aerodynamic efficiency is defined as a ratio of co-efficient of lift to co-efficient of drag. Reduction of
aerodynamic efficiency is a result of wing tip vortices which attributes to induced drag. These vortices are
formed due to the difference in pressure between the top and bottom surfaces of the wing. Winglets can be
used to improve overall aerodynamic efficiency of a wing. In this study, we will compare the effect of
different configurations of winglets — Canted, Fenced, Raked and Spiroid on the aerodynamic efficiency of
the wing. A GOE767-il aerofoil wing made of aluminium is modelled and retro-fitted with the above
mentioned winglet configurations. CFD analysis for the wing and winglets will be done in three flight
conditions — Take-off, Cruise and Landing, to calculate co-efficient of lift and drag. This computational
analysis will be done on Ansys Fluent using Spalart — Allmaras turbulence model. The CFD results
obtained will be compared based on the efficiency to determine the best winglet configuration for said
aerofoil structure and wing parameters.

Keywords: Winglets, Induced Drag, Wingtip Vortices, co-efficient of lift, co-efficient of drag,

Aerodynamic Efficiency

1. Introduction

For an aircraft one of the most important
components is its wings, as it produces the lift
required. However, this lift also creates ‘lift
induced drag’ at the wing tips. To reduce this drag,
wingtip devices also called winglets are used [1-4].
Winglets help do this by moving wingtip vortices
(which are responsible for the ‘lift induced drag’)
outwards.

1.1. Canted Winglet

Canted winglets are short, upward-sloping wedges.
The cant angle cannot be decreased too much, as
the flow separates more easily, affecting the
properties of the wing at higher angles of attack
(AoAs/a) [2][3].

1.2. Fenced Winglet
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Fenced winglets are ones that extend both
downward and upward from the tip of the wing
and perpendicular to it. The smaller size results in
a smaller bending moment at the fuselage.

1.3. Raked Winglet

Raked wingtip design is where the tip of the wing
is given a further sweep angle than the rest of the
wing. Raked wingtips increase the wingspan and
thereby produce higher bending stresses.

1.4. Spiroid Winglet

Spiroid winglet technology was developed by
former Boeing chief Dr. Louis Gratzer. It looks
like a wingtip that has been bent through 360° to
form a loop. This winglet will enhance the lift and
reduce the drag [4][5]. Nikola N. Gavrilovic,
carries out CFD analysis of wing with and without
winglets to compare the two results. It will be
observed that wing without winglet produces
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larger vortices, which induces more drag,
compared to wings with winglets [5]. A study by
Hanlin Gongzhang Eric Axtelius on lift and drag
of various winglet design showed spiroid and
fenced winglets to be the least effective design [7].
Saravanan Rajendran conducted a theory based
study and parameterized all associate parameters
of the wing model. At optimal parameters, the
payload of the aircraft could be increased [6].
Based on the survey, the expected ranking of the
winglets in decreasing order of aerodynamic
efficiency is [7] Raked, Canted, Spiroid and
Fenced. This study aims to improve the
aerodynamic efficiency of GOE 767-il aerofoil by
introducing four winglet designs, namely -
Canted, Raked, Spiroid, Fenced winglets. The
team will carry out theoretical and CFD analysis of
the wings and winglets in three flight conditions
namely — Take-off, Cruise and Landing. During
the analysis, different parameter such as density,
altitude and viscosity will be considered. The wing
and winglets will be designed on Solid Edge and
then the winglets will be retro-fitted onto the wing.
It will then be analysed on Ansys Fluent.

2. Governing Equations
2.1. Navier Stokes Equation
Continuity equation

dp | d(pu) | A(pv) , A(pw) _
at+ax+ay+az =0 (1)

X Momentum equation
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Similarly, y and z momentum equations can be

fX_a_p+2 62_u+ —
p ox H ox2  oy? o072

framed.
2 w
CL=oz X5 @3)
CD = CDSF + FF X CDSF + K Xx CL2 (4)
0.455
CDSF " (log(Re))258 (1+0.144M?2)0.65 (5)
AE = Cu (6)
Cp

Table. 1. Symbols
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Notation Meaning
AE Aerodynamic Efficiency
Cp Drag Coefficient
Cprp Form Drag Coefficient
Cpy Induced Drag Coefficient
Cpsr Skin Friction Drag Coefficient
Cp Coefficient of Lift
FF Form Factor
K Constant
L Lift Force (N)
M Mach Number
Re Reynolds’ Number
p Density (kg/m”3)
S Surface Area (m”2)
% Velocity of incoming air (m/s)
w Weight of wing
u Velocity in x — direction (m/s)
% Velocity in y — direction (m/s)
w Velocity in z — direction (m/s)
t Time period (S)
i Dynamic Viscosity (m”3/s)
p Pressure (Pa)

3. Methodology
3.1. CAD Modeling

Fig. 1. Aerofoil Structure

The wing and winglets will be modelled using
solid edge 2019 academic version. To create the
aerofoil structure in Solid Edge, ‘Curve by Table’
function can be used. The co-ordinates of the
aerofoil-GOE767-il are imported using this
function and scaled. The curves are aligned and
spaced to incorporate the wingspan and other
parameters mentioned in ‘Table. 2. Dimensions of
Wing’. Lastly, ‘Loft Protrusion’ is done to obtain
the final feature. Similarly, the winglets are
modelled with appropriate dimensions.
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the wingtip vortices are reduced however from the
values obtained. We can see that winglets help in

3.2. CFD Analysis

Once modelling is completed, the analysis will be
carried out on Ansys Fluent 2020 academic
version. The turbulence model used in this analysis
is Spalart-Alamas equation. But first, the
geometries will first be imported into the Ansys
workbench module. An artificial wind tunnel will
be created around the wing(s). Next step is to
create a discrete mesh and set appropriate
boundary conditions based on the flight conditions
as shown in ‘Table.3.Input Parameters’. Lastly, the
calculation will be completed and the results will
be obtained and discussed in the coming chapters.

4. Results and Discussions

4.1. Theoretical & CFD Results

As shown in figure the various plots such as
velocity magnitude and the pressure distribution
were plotted. It was observed that the wing tip
vortices which attribute to the induced drag and
resulted in lower aerodynamic efficiency of the
wing was improved upon retrofitting the winglets
on to the wing. We can see a general trend where
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Parameter Value increasing the efficiency in specific flight
Area 214452 conditions.
Left Wing Length 21.27m Table.3.Input Parameters
Take- Crui Landi
Mean Aerodynamic 6.98m off ruise ng
Chord Length Geo. | AoA(deg) | 10 3 6.5
Taper ratio 0.267 op. Op Pres 19740.97
Aspect ratio 7.99 Cond. (Pa) 101325 1 101325
Chord Length Materi | DM 4905 | 032079 | 1.225
9 Al (kg/m"3) ' ' '
_At root 857m Viscocity(k | 1.46E- ) 1.46E-
Prop. g/m-s) 05 4.56E-05 05
-At tip 2.29m Inlet
Bound velocity 62.762 249.9 67.99
Trailing Edge Sweep ary (m/s)
Anagle Cond. | Temp (K)
TIst sweep 80 (Inlet) 288.15 | 248.2854 | 288.15
4.1.1. Wi
-2nd sweep 22.3° 'ng
Leading Edge 31.50 B s
Sweep Angle I e %
Dihedral Angle 6o
t/c ratio 11.5

S \\\\

N\
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Fig. 2. Pressure Pathlines at Cruise
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Fig. 3. Pressure Pathlines at Landing

Table.4. Table of values

Flight CFD Values
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o [

Fig. 6. Pressure Pathlines at Landing

Table.5.Table of values

Condition CL Cp Efficiency

Flight CFD Values
Condition C. Cp Efficiency

Take-Off | 0.9302 | 0.1181 | 7.87638

Take-Off | 0.93915 | 0.10266 | 9.14816

Cruise | 0.2704 | 0.0265 | 10.20377

Cruise 0.323 | 0.01781 | 18.13588

Landing | 0.7003 | 0.0559 | 12.52773

Landing | 0.89139 | 0.063 14.14905

4.1.2. Winglet — Canted
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Fig. 4 Pressure Pathlines at Take-off
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Fig. 5. Pressure Pathlines at Cruise

4.1.3. Winglet — Fenced
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Fig.7. Pressure Pathlines at Take-off
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Fig. 8. Pressure Pathlines at Cruise
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Fig. 9. Pressure Pathlines at Landing Fig. 12. Pressure Pathlines at Landing
Table.6. Table of Values Table.7.Table of VValues

Flight CFD Values Flight CFD Values
Condition | ¢ Cp, | Efficiency Condition | ¢, Cp, | Efficiency
Take-Off | 0.75675 | 0.07810 | 9.68980 Take-Off | 0.51865 | 0.09004 | 5.76022

Cruise |0.29339 | 0.02835 | 10.34881 Cruise |0.18632 | 0.01678 | 11.10369

Landing | 0.55275 | 0.04673 | 11.82959 Landing | 0.39855 | 0.04305 | 9.25784

4.1.4. Winglet — Raked 4.1.5. Winglet — Spiroid
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Fig. 13. Pressure Pathlines at Take-off
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Fig. 11. Pressure Pathlines at Cruise Fig. 14. Pressure Pathlines at Cruise
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Fig. 15. Pressure Pathlines at Landing
Table. 8.Table of Values

Flight CFD Values
Condition | ¢ Cp | Efficiency
Take-Off | 0.77436 | 0.07346 | 10.54186

Cruise | 0.31950 | 0.03430 | 9.31487

Landing | 0.52356 | 0.04389 | 11.92828

4.2. Comparison of Winglets

One can see that Spiroid offers the least efficiency
when it comes to the cruise phase of the flight to a
point where the efficiency is lower than that of the
wing without winglets by 9%. Canted winglet
shows the maximum efficiency when it comes to
the cruise phase of the flight whereas the gains
obtained from fenced and raked winglets are 1%
and 9% respectively. Speaking of the take-off
phase Spiroid shows the maximum gain in
efficiency of 34% and canted showing a 13% rise
in efficiency in the landing phase of the flight as
shown in the table below.

Aerodynamic Efficiency vs. Flight Condition

\

Aerodynamic Efficiency

9.1 181 141

Flight Condition

Chart.1. Aerodynamic Efficiency vs. Flight
Condition
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% Improvement vs. Flight Condition

% Improvement

Flight Condition

Chart. 2. Improvement vs. Flight Condition

Conclusion

e Canted winglet was found to show most
improvement in cruise condition. Therefore,
Canted winglet is best configuration of all the
other configurations analyzed.

o After Canted winglet, Raked and Fenced winglet
configurations gave desirable results.

e Spiroid winglet was found to give negative
improvement in cruise condition and is therefore
not a viable configuration for wing parameters
used in this project.
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