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Abstract
Titanium alloys have been widely used as metallic materials for additive
manufacturing, especially selective laser melting in recent decades because
of its great corrosion resistance, excellent mechanical properties and bio-
compatibility. Solid titanium alloys have higher compressive strength and
elastic modulus than natural human bones and to get similar results that of
human bones, solid titanium alloys are replaced by porous titanium alloys to
fulfil the orthopaedic demands in biomedical applications. In this study two
different types of Ti scaffolds (Grid and Vinties, each of two, total number of
four) were designed using 3D CAD software with 65% porosity and fabricated
through SLM process. The process parameters, employed in the work like laser
power, hatch distancing, scanning speed, and layer thickness are the most
effective factors that affect the porosity of the SLM-fabricated samples. The
results demonstrate that when the porosity percentage increases, the energy
density, scanning speed, and hatch distancing rise, but the laser power drops.
This study primarily focuses on to determine porosity of the fabricated scaf-
folds by Archimedes principle and optimizing the process parameters. Finally,
compressive test is carried out on the scaffolds in an INSTRON machine of
maximum ± 25 kN load capacity. The result shows better capability to man-
ufacture with minimum error in porosity percentage and good potential for
orthopedic applications as metallic implants.

1. Introduction

Ti-6Al-4V is a most general form of titanium alloy
which is commonly employed in orthopaedic and
dental applications. Its superior performance
and wide variety of applications in the military and
commercial industries, Ti-6Al-4V is referred to as
”space metal” or ”ocean metal” (Leyens and Peters).
With widespread use of the titanium alloy in bio-

medical domains in recent decades, it is becoming
more common to produce Ti-6Al-4V alloy devices
with complicated structures (Ju et al. Bartolomeu et
al.). Traditional manufacturing process is unable to
match the demands of complicated shapes like inter-
nal channels, space progressively shifting surfaces,
and ultrathin walls.

Metal AM methods, particularly SLM process,

OPEN ACCESS 88

www.rspsciencehub.com
http://crossmark.crossref.org/dialog/?doi=10.47392/irjash.2022.023&domain=pdf
http://dx.doi.org/10.47392/irjash.2022.023
https://orcid.org/0000-0001-8417-8938
mailto:palashmondal.ju@gmail.com


Additively manufactured porous titanium alloy scaffolds for orthopaedics 2022, Vol. 04, Issue 04 April

have been produced to eliminate the bottleneck.
SLM melts the powders in layer upon layer to pro-
duce a strong metallurgical link between them with-
out the use of any additional instruments. It has the
potential to construct purely dense and complicated
structures. However, there are a number of issues
to make a completely dense element by SLM pro-
cess (Nicola and Schiavone). As a result, increas-
ing the density of SLM fabricated samples has been
a major priority for many researchers. Further-
more, a unique microstructure has been seen dur-
ing the SLM process as a result of the severe non-
equilibrium condition. Li et al. optimized the
parameters of Ti-6Al-4V scaffolds fabricated by
SLM via Taguchi method (Li et al.) looked at the
effect of layer thickness on performance (Shi et
al.) presented a revised model that helps to under-
stand the connection between mechanical proper-
ties and input process parameters (Tiwari et al.)
investigated heat transfer simulation model based
on process parameters (junfeng and zhengying) dis-
cussed the effect of laser power, layer thickness,
scanning speed, and hatch distancing on microstruc-
tures (Khorasani et al.) were studied the effect of
input process parameters of Al-Si-10Mg manufac-
tured by SLM (Butler et al.). Jin et al. investigated
the control of porosity content in Co-Cr-Mo fabri-
cated by SLM (Joguet et al.). studied the potential
of microstructure of Ti-6Al-4V alloy manufactured
by SLM at different scan speeds (Pei et al.) investi-
gated microstructure of selectively laser melted Ti-
6Al-4V alloy at different energy densities (Nan and
Jin). It has been observed that input process param-
eters are the primary elements that influence the
microstructure of SLM fabricated samples, and pro-
cess optimization of Ti-6Al-4V fabrication is still
needed. The goal of the present work is to look at the
influence of process parameters (laser power, hatch
distancing, and scanning speed) on porosity and rel-
ative density of Ti-6Al-4V made by SLM, and to
find an optimal range of process parameters.

2. Material Selection and Methods

Gas atomized Ti-6Al-4V powders, supplied by Sup-
plied by EOS GmbH (Germany), were employed in
this work. The morphology of Ti-6Al-4V powder
was investigated optical microscope Olympus BX41
or GX51 (EOS, Finland) as shown in Fig. 1 and
a nearly spherical shape with smooth surface was

observed. In this work, two different type scaffolds
(Grid and Vinties, each of two, total 2x2=4) of 15
mm cube and 65% porosity were designed in 3D
CAD software and manufactured by SLM process
(shown in Fig. 2). Then the scaffolds were heat
treated through 8000C for 120 minutes. To retain
an environment with a low oxygen concentration
throughout construction, initially the building cham-
ber is emptied then the chamber is filled with an inert
gas (argon). A specific density of 4.41 g/cm3 and
relative density 100% (Approx.) for Ti64 was used.

FIGURE 1. SEM morphology of Ti-6Al-4V pow-
ders

FIGURE 2. Porous Ti-6Al-4V scaffolds by SLM

The SLM technique depends on some selected
process input parameters like energy density, scan-
ning speed, laser power, hatch distancing and layer
thickness and the relationship between them can be
expressed as:
Ed=P1/(vsht) ....1
Where Ed = energy density, Pl = laser power, vs

= scan speed, hd = hatch distancing and t = layer
thickness.
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The porosity percentage (P) depends on the pro-
cess parameters, energy density (Ed), scanning
speed (v), laser power (Pl) and hatch distancing (h)
and the relationship between them can be expressed
as:
P = f(Edvsh

2)/p1 ....2

3. Result and Discussion
3.1. Optimisation of process parameters during

SLM
The porosity of produced samples are influenced by
input process parameters like scanning speed, laser
power, hatch spacing, and layer thickness during the
SLM process. The scaffolds were made using a
SLM machine (Model: EOSINT M280-400W) with
the input process parameters for TI-6AL-4V materi-
als. An optimization analysis is necessary to set the
suitable process parameters for getting the desired
density during manufacturing by SLM. The opti-
mized process parameters are shown in Table 1.

FIGURE 3. Effect of process parameters on
porosity during SLM

From Fig. 3, it is observed that with increase in
laser power, porosity % decreases and on the other
hand porosity % increases with scanning speed.

3.2. Porosity measurement of porous scaffolds
The porosity of the manufactured samples is mea-
sured through density principle. In a minutely
graded testing cylinder, each sample is immersed in
water. The quantity of displaced water gives the the-
oretical volume of the porous scaffold as shown in
Fig. 4. By subtracting the actual volume of the sam-
ple without porosity from the theoretical volume of
the scaffold with porosity, the porosity data is deter-
mined (shown in Fig. 5). The grid type of sam-
ples has the lowest percentage of porosity inaccu-
racy than vinties type, as seen in Fig. 6.

FIGURE 4. Porosity measurement ofscaffolds by
measuring cylinder

The porosity of the scaffolds can be calculated as:
P = (1− Vp/Vd)× 100% .....3
Where P = porosity, Vp = solid volume of the

porous sample and Vd = overall volume of the
densed sample. The measured porosity of each sam-
ples are listed in Table 2.

From Fig. 5, it is observed that the grid type of
samples has the lowest percentage error in porosity
that of vinties type. With a low variation of poros-
ity difference between the modeled and fabricated
samples, the grid type sample might provide better
similarities.

3.3. Compression test
To measure the mechanical properties, all of
the samples were compressed uniaxially in an
INSTRON machine (maximum ± 25 kN load capac-
ity). A TAB attached to the machine is used to set

International Research Journal on Advanced Science Hub (IRJASH) 90



Additively manufactured porous titanium alloy scaffolds for orthopaedics 2022, Vol. 04, Issue 04 April

TABLE 1. Input process parameters used in SLM process for Ti-6al-4v.
Parameters Value
Type of Laser Ytterbium Fibre Laser
Scan Speed 1250 mm/Sec
Particle Diameter 80 µm
Hatch Distance 0.12 mm
Laser Power 340 W
Density 4.41g/cm3

Thickness of Layer 0.06 mm
Scan Angle of Rotation 670

Environment Maintained Inert
Scan Path ”X” & Rotational

TABLE 2. Measured porosity of the fabricated samples

Sample Type Designed porosity
Actual porosity
Sample 1 Sample 2

Grid 65% 63.97% 63.18%
Vinties 65% 62.16% 62.76%

FIGURE 5. Error in porosity percentage of fab-
ricated scaffolds by SLM

up the machine’s initial settings as well as to con-
trol it. The change in load applied and deformation
responses are recorded for each sample in a com-
puter which was pre-connected to the INSTRON
machine during the test. Under normal atmospheric
circumstances (280C and 65 % RH), all scaffolds are
compressed at a crosshead movement rate of 0.02
mm/sec. Finally, using the recorded data, the stress-
strain curve is plotted (shown in Fig. 6).

The compressive modulus of elasticity is deter-
mined by the slope drawn on the stress-strain curve.
Fig. 6 shows the values of modulus of elasticity
and compressive strength of grid and vinties sam-
ples obtained from INSTRON are 10.56 GPa & 8.87

FIGURE 6. Compressive stress vs staincurve for
the porous Ti-6Al-4V scaffolds

GPa and 87.2 MPa & 75 MPa respectively. When
can be seen from the results, the grid sample is
slightly tough at first due to its form, but as the
wire distorts under load, it becomes soft and the
strain rises. The fabricated scaffolds have a promis-
ing elastic modulus (E = 4 – 30 GPa (Becerikli and
Mustafa)) that is equivalent to native cortical bones.
Table 3 demonstrates that it has a greater com-
pressive strength than bone (compressive strength
ranges from 0.45 to 25.8 MPa (Martens et al.)). The
stress-shielding effect is reduced as a result of the
enhanced compressive strength, but the implant’s
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TABLE 3. Comparison of mechanical properties between fabricated porous Ti-6Al-4V scaffolds and
natural cortical bones

Material Scaffold Type
Mechanical Properties
Elastic Modulus (GPa) Compressive Strength (MPa)

Ti-6Al-4V
Grid 10.56 87.2
Vinties 8.87 75

Natural bone - 4 - 30 0.45 – 25.8

lifespan is extended.

4. Conclusion
In this work two different type of porous Ti-6Al-
4V scaffolds were designed using 3D CAD software
of 15mm cube with 65% porosity and manufac-
tured by SLM process. Titanium alloys, have excel-
lent mechanical properties, biocompatibility, corro-
sion resistance and low cost, are the most useful
metallic biomaterials in the field of orthopaedic and
dental implants. To upgrade mechanical property,
the porous scaffolds were heat treated at 8000C for
120 minutes in the presence of inert atmosphere,
and at last cooled at room temperature in a fur-
nace. The process parameters are optimized as:
340 W laser power, 1250 mm/sec scanning speed,
0.12 mm powder layer thickness and 0.06 mm hatch
spacing. AM-fabricated scaffolds have marginally
lower porosities than designed scaffolds, resulting
in relative elastic modulus and mechanical strength
deviations. The grid type of sample has the low-
est error percentage in porosity than vinties type.
The elastic modulus of manufactured samples is
very similar to the human bones, but compressive
strength is higher than human bones, which may aid
to lessen the effect of stress-shielding and extend the
implant’s lifespan and can be successfully applied to
biomedical fields.
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