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Abstract

Quantum machine learning is an interdisciplinary research domain that seeks
to merge the concepts of quantum computing and machine learning. Owing
to the computational complexity and time constraints of certain scientific chal-
lenges, classical computation is often inadequate, and quantum computation
offers a promising alternative. Notable algorithms in quantum machine learn-
ing include quantum versions of classical machine learning algorithms, such
as support vector machines, and classical deep learning techniques, such as
quantum neural networks. The primary aim of quantum machine learning is
to improve the performance of machine learning by leveraging quantum com-
puting. While there have been promising advances, quantum machine learning
still requires significant advancements in quantum hardware to fully realize its

potential.

1. Introduction

Machine learning is a subfield of computer science
that deals with the discovery of patterns from data
to make sense of previously unintelligible inputs.
It is a technique that utilizes algorithms to process
large amounts of data for tasks that the human brain
is inherently good at, such as pattern recognition,
speech recognition, image recognition, and strategy
optimization. The foundation of current data min-
ing and data visualization techniques lies in algo-
rithms for optimizing constrained multivariate func-
tions, which is the fundamental concept of machine
learning. The decision function maps input and out-
put points, and optimization is the result of this pro-
cess. While there are exceptions to this oversimpli-
fied rule, such optimizations are essential to learn-
ing theory and are used in the creation of artificial
intelligence. Three techniques that have historically
been employed in machine learning are supervised
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machine learning, unsupervised machine learning,
and reinforcement learning (Schuld). In supervised
machine learning, computers are trained to oper-
ate using data that has already been labelled with
some features, while in unsupervised machine learn-
ing, machines examine data without labels, identi-
fying patterns based on similarities and differences
between classes (Mishra et al.). Reinforcement
learning, on the other hand, enables machines to
learn by analyzing feedback.

The annual amount of data saved globally has
increased by 20%, thereby expanding the need for
novel machine learning techniques . The appli-
cation of quantum computing to optimize conven-
tional machine learning techniques has become a
primary focus for academic institutions and top IT
businesses. The convergence of modern physics
and engineering has facilitated the development
of advanced techniques, such as Grover’s Search,
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Shor’s Factoring, and Linear Systems Algorithms,
which have the potential to transform existing
paradigms. Quantum Machine Learning, the amal-
gamation of quantum computing and deep learning,
presents a promising new field with extraordinary
potential .

Quantum phenomena such as superposition and
entanglement, when applied to classical machine
learning gives birth to concept of Quantum Machine
Learning. The basic data processing components
used in quantum systems are called qubits (quan-
tum bits). Like binary values, which can only be
either O or 1, a qubit is not constrained to a two-state
solution but can also reside in superposition. As a
result, qubits can be used concurrently at 1 and O as
well as 0 and 1. It can perform many calculations
in parallel because it can chase simultaneous prob-
abilities through superposition and manipulate them
with magnetic fields. Furthermore, because of this,
quantum computers are capable of supersonic com-
putation of extremely complex tasks. Qubits also
have the intriguing feature that, even if we do not
yet know what the results are, their superpositions
can be logically linked to those of other qubits by
pairing. Because of this, changing the state of one
qubit will immediately and predictably change the
other. Businesses may therefore have instant con-
tact relays . We develop quantum algorithms to exe-
cute the conventional algorithms used in quantum
machine learning techniques using a quantum com-
puter. Data can be categorized, sorted, and anal-
ysed by using quantum algorithms for supervised
and unsupervised learning methods. Once more,
these methods are applied using models of a support
vector machine or a quantum neural network.

The development of quantum versions of arti-
ficial neural networks, which are frequently used
in machine learning, has attracted some attention,
but because they frequently adopt a more biologi-
cal approach, no major progress has yet been made .
Some authors make an effort to develop complete
quantum algorithms that deal with pattern identi-
fication problems. Other approaches merely sug-
gest running classical machine learning algorithm
subroutines on a quantum computer to boost per-
formance (Sharma). An intriguing approach that
seems particularly suitable for some subsets of opti-
mization problems is adiabatic quantum machine
learning. It is skilfully done to transform stochas-
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tic models like hidden Markov models and Bayesian
decision theory into the language of open quantum
systems (Chowdhury). The comprehensive theory
of quantum learning, or how quantum information
might potentially be used in intelligent computing,
is still in its infancy despite the growing interest
in the topic. Before discussing quantum comput-
ing and subsequently quantum machine learning, it
is important that we are acquainted with the terms
listed below.

1.1. The Bloch Sphere

The Bloch Sphere is a geometrical illustration of a
qubit. The state of a qubit is represented by a two-
dimensional vector with a usual length of one. This
vector is composed of two numbers: a real number
and a complex number.

1.2. Quantum Decoherence

Quantum Decoherence-related issues are brought
on by qubit combination. Unwanted collapses like
these happen erratically and naturally as a conse-
quence of system disturbance. In the end, this leads
to computation mistakes. The outcome won’t be
what you might have expected when we operate on
a qubit that you think is in a state but isn’t.

1.3. Quantum Entanglement

According to the theory of quantum entanglement,
two qubits are always superposed in two distinct
states. The other is automatically placed in a spin-
down position if one is rotating up. It is impossi-
ble for both qubits to be in the same state at the
same time. To put it another way, they are constantly
entangled. What’s taking place in this case is quan-
tum coupling.

1.4. Dual Principle

Qubits resemble both waves and particles in their
characteristics. In actuality, everything does, but the
qubit’s atomic size makes them simpler to observe.
Qubits can interact with one another through inter-
ference because of the wave-particle duality.

1.5. Quantum Speedup

Due to quantum coherence, the quantum computer
can process information in a manner that is not
possible for classical computers. A quantum algo-
rithm approaches problems, like database queries,
in a step-by-step manner. It can outperform the
most widely used traditional algorithms. This phe-
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nomenon is known as the Quantum Speedup.

This paper provides an overview of the rapidly
developing subject of quantum machine learning,
outlining its significance, uses, benefits, and disad-
vantages. Discussions about quantum computing
and its necessity will also be present. Three case
studies will be discussed in the final sections of the
paper to help readers better grasp QML’s advan-
tages.

2. Benefits of QML

One of the main benefits of quantum comput-
ers is the possible increase in computation speed.
Depending on the issue and algorithm, respectively,
quantum algorithms can be exponentially or poly-
nomially faster than classical algorithms. Quantum
computers might be better able to handle noisy data,
learn from fewer inputs, or comprehend more com-
plex structures. The three primary advantages of
quantum machine learning are, in brief:

2.1. Improvements in run-time: obtaining faster
results; Quantum Hybrid Helmholtz Machine

Hybrid algorithms, which combine classical and
quantum computing, profit from particular advan-
tages like effective sampling. These hybrid tech-
niques offer a solution to issues with traditional pro-
cessing in generative modeling. These generative
models can be used to train probability distributions
over (high dimensional) data sets, for instance.

A generative model’s depth can be increased to
find more abstract models of the data, but doing
so incurs intractably high inference and training
costs. Both inference and training are carried
out using computationally costly methods such as
Markov Chain Monte Carlo sampling and varia-
tional approximations. Since quantum computers
are capable of effective sampling, the costly sam-
pling subroutine can be executed on them, signif-
icantly reducing the computational complexity of
generative models. This can be used to build a com-
posite Helm-Holtz machine, a specific type of gen-
erative model, on a gate-based quantum computer or
an annealing device.

A top-down generative network and a bottom-
up detection network combine to form a Helmholtz
machine, a particular kind of artificial neural net-
work. The recognition network accepts data and
constructs probability distributions over it, whereas
the generative network generates representations of
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the input and hidden variables.

2.2. Learning capacity improvements: increase of
the capacity of associative or
content-addressable memories; Quantum
Hopfield Neural Network

A type of machine learning algorithms known as
neural networks consists of nodes that can be con-
nected in various ways and communicate with one
another via weighted edges. One exception is Hop-
field neural networks (HNN), which do not self-
connect and have a single layer of nodes connected
to one another by symmetric edges. HNNSs can
be used as associative memories because they can
remember a variety of patterns and link noisy inputs
to the nearest stored pattern. With the help of train-
ing techniques like Hebbian learning, the network
can be trained to recall memory patterns. In this
instance, all memory patterns are used to directly
compute the weights, requiring little computational
work.

An HNN may contain an exponentially large
number of stable attractors if the collection of attrac-
tors is predetermined and fixed. HNNs’ storage
capabilities are, however, usually limited if patterns
are selected at random because there is typically less
that can be saved.

For Hebbian learning, an HNN with n nodes has
a storing capacity of n/(4 log n) patterns asymptoti-
cally. It is believed that converting HNNs into their
quantum equivalents will increase storage capacities
beyond what is currently feasible with traditional
networks. For instance, it is proposed a quantum
HNN that, when qutrits are used, might provide an
exponential capability.

2.3. Learning efficiency improvements: less
training information or simpler models
needed to produce the same results or more
complex relations can be learned from the
same data; Variational Quantum Circuit for
Machine Learning

An especially well-liked technique for developing
innovative hybrid QML algorithms is the use of vari-
ational quantum circuits (VQC), which are com-
posed of several optimized quantum gates. These
quantum devices allow for the evaluation of a cost
function. To optimize the cost function, which may
once more entail a quantum circuit, a variety of clas-
sical techniques can be used.
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3. Need for Quantum Computing

One of the major impetuses for the development
of quantum computers is the approaching plateau
of classical computers. Moore’s law predicts that
the rate of transistor growth on computer chips will
shortly plateau. There is no economic reason for
this; it is simply an outcome of physics principles.
Transistors of the latest generation have a size of
about 10 nanometers. It has been established that
transistors begin to feel the effects of quantum tun-
neling at a distance of less than seven nanometers.
When the thickness of a gate hits a certain value, an
electron can ”jump” over the barrier, allowing cur-
rent to flow in an unintended direction. When bar-
riers in the transistor grow arbitrarily tiny, this phe-
nomenon results. Due to this non-classical effect,
the transistors are essentially useless. Even though
it’s possible that chip manufacturers will be able to
partially avoid this effect, the size of the transistor
will basically reach its maximum very soon.

Quantum bits, also referred to as qubits, are used
in quantum computers instead of tiny transistors
because they take advantage of the same quantum
phenomena that cause chaos in conventional sys-
tems. Due to superposition, each extra qubit is
equivalent to doubling the computer’s power. This
stands in stark contrast to the fact that twice as many
transistors would be needed to give a typical com-
puter twice the processing capacity.

It is expected that using quantum computing will
have advantages over using traditional hardware.
For instance, Shor’s factoring algorithm is one of
these early benefits. This algorithm will accelerate
the factoring procedure almost exponentially. This
method is put forth as a means of breaking the RSA
(Rivest-Shamir-Adleman) security system. Grover’s
algorithm also employs phase amplification to find
items in an unsorted database. This could, among
other things, be used in graph theory or machine
learning. And finally, the quantum linear systems
approach is especially well suited to machine learn-
ing.

4. Applications

In this section, we will discuss some methods that
quantum computers use to solve machine learning
problems.
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4.1. QML to solve linear algebraic problems

Many different Data Analysis and Machine Learn-
ing problems are handled by using matrix operations
on vectors in a high dimensional vector space. In
a 2a-dimensional complex vector space, the quan-
tum state of a qubit in a quantum computer is a vec-
tor. Numerous matrix transformations occur in this
region. Quantum computers effortlessly handle the
Fourier Transform, finding eigenvectors and eigen-
values, and solving linear sets of equations over 2a-
dimensional vector spaces in polynomial time. (and
exponentially faster than classical computers due to
the Quantum Speedup). One example is the Harrow,
Hassidim, and Lloyd (HHL) method.

Ancilla [0

Register |0)

FIGURE 1. Circuit Diagram of the HHL Algo-
rithm

Quantum Principal Component Analysis

Principal component analysis is a dimensionality
reduction technique that can be used to decrease the
number of dimensions in large datasets. Since we
must choose which variables to remove without los-
ing important data, accuracy must be sacrificed in
order to decrease the dimensions. Dealing with a
smaller dataset is significantly more practical when
done properly, which greatly simplifies the machine
learning work.

A dataset with ten input attributes, for instance,
can be effectively analyzed using principal compo-
nent analysis using a conventional computer. How-
ever, if the input dataset contains a million features,
the conventional techniques of principal component
analysis will not be effective because it will be chal-
lenging to demonstrate the relative importance of
each feature.

Another issue with conventional processors is the
computation of eigenvectors and eigenvalues. The
more dimensional the input, the larger the collection
of related eigenvectors and eigenvalues becomes.
Quantum computers can handle this issue swiftly
and effectively thanks to quantum random access
memory (QRAM), which chooses a data vector at
random. The vector is converted into a quantum
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state using qubits. The summed vector that emerges
from quantum principal component analysis con-
tains logarithmic qubits. The resulting random vec-
tor is a compact matrix. the matrix of correlation.

Using the quantum phase estimation algorithm,
density matrix exponentiation, and repeated data
sampling, we can take the quantum version of any
data vector and decompose it into its main com-
ponents. (which determines the eigenvectors and
eigenvalues of the matrices). As a result, both the
complexity of calculation and the complexity of
time are decreasing exponentially.
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FIGURE 2. Quantum Circuit to perform Princi-
pal Component Analysis

4.2. Quantum Support Vector Machines

Both categorization and regression are performed
using the Support-Vector-Machine, a well-known
machine learning technique. It is used to divide
datasets that can be linearly separated into the proper
groups for classification tasks. Let’s assume the
dimensions of the data are expanded until they can
be separated linearly if they can’t already. SVM is
limited to a certain number of dimensions on classi-
cal machines. After a certain point, it will become
challenging because such computers lack sufficient
computing capacity.

On quantum computers, however, the Support
Vector Algorithm can be run exponentially more
rapidly. The superposition and entanglement prin-
ciples allow for more efficient operation and faster
outcomes.
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o —HH _ _H - _
0} - .. -TH]}- .v

FIGURE 3. Quantum Circuit to perform SVM
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FIGURE 4. Deep Quantum Learning

4.3. Quantum Optimization

A machine learning algorithm makes use of opti-
mization to speed up the learning process and gen-
erate the most complete and precise estimates. The
main objective of optimization is the reduction of
the loss function. More inaccurate and unreliable
outputs will be produced as a result of an increased
loss function, which can be costly and produce erro-
neous predictions.

Most machine learning methods call for itera-
tive performance optimization. Quantum methods
for optimization suggest that machine learning opti-
mization issues will get better. The quantum entan-
glement property enables multiple copies of the
present answer, encoded in a quantum state. They
are utilized at each step of the machine learning
algorithm to improve that response.

4.4. Deep Quantum Learning

The formation of neural networks can be accel-
erated by combining deep learning and quantum
computing. By employing this method, we could
achieve deep optimization and develop a fresh deep
learning system. We demonstrate that conventional
deep learning techniques can be replicated on a real,
physical quantum computer. When using multi-
layer perceptron topologies, the computational dif-
ficulty increases with the number of neurons. Using
specialized GPU groups can improve performance
while drastically reducing training time. However,
even this will be outpaced by quantum processors.
Rather than using the software found in conven-
tional computers, the technology in quantum com-
puters is designed to mimic neural networks. In this
case, a qubit plays the part of a neuron, the basic unit
of a neural network. As a result, a quantum system
with qubits can be used for deep learning applica-
tions at a rate that is faster than any conventional

169



Aishwarya C, Venkatesan M and Prabhavathy P

machine learning method to accomplish the task of
a neural network.

5. Disadvantages

Quantum computing is the answer to many prob-
lems, but it is not without its limitations and chal-
lenges due to its reliance on fundamental physics
and the primitive state of other technologies that aid
in the hardware and software development of quan-
tum computers, on which complex algorithms can
be built and run.

5.1. Hardware Limitations

One issue that frequently afflicts academics is isola-
tion. Qubits may lose quantum properties like entan-
glement when exposed to heat or light, which further
reduces the quantity of data they can hold. These
two factors can also cause quantum decoherence.
Second, even though they are crucial for changing
the state of the qubit, spins in the logic gates of
quantum computers are prone to error. Any incor-
rect rotation could cause a problem with the prod-
uct. Additionally necessary for the area of quantum
machine learning are computers with longer circuit
lengths and error correction (with redundancy for
every qubit).

5.2. Software Limitations

When creating programs for quantum computers,
one must take into account their physics. The Turing
machine can be used to build a classical algorithm,
but a quantum algorithm must be developed in the
style of pure physics without the aid of any simple
formulas that would link it to logic.

In a system of this type, scalability is always of
utmost importance. modifying a program to have
more processing power in order to manage larger
data. The amount of information required to develop
these quantum computing algorithms is quite small.
As a result, the growth is largely intuitive. It is
challenging to develop models that have a signifi-
cant impact on machine learning because the actual
applicability of the majority of well-known quantum
algorithms is constrained by the limitations of some
simulations. The maximum amount of qubits that
can be arranged on a quantum circle is the third lim-
itation on quantum computing. Despite the fact that
these limitations apply to all forms of quantum com-
puting, the inclusion of fields like machine learning
can boost interest and steer study in the right direc-
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tions.

6. Security Intrusion Detection: Case Study I

Even the most sophisticated machine learning (ML)-
based detectors suffer from poor quality and perfor-
mance when dealing with big data inputs: model
training and application using a traditional ML
detector run on a big data input on a typical comput-
ing device may result in accurate outputs but take a
very long time, or it may be trained and calculated
quickly but perform with poor accuracy of outputs,
both of which are at odds with malicious activity
characteristics like intrusion variability, intensities,
and so on. In this case study, as seen in (Tian and
Baskiyar), we emphasise the innovative quantum
machine learning approach used in intrusion detec-
tion, particularly when dealing with large inputs.
As intrusion detection as a security relative task
requires quick and accurate detectors, QSVM and
QCNN computing models were mainly discussed in
the referred paper for case study. The main aim of
the case study is to investigate and compare the basic
QML models and understand their superiority while
processing big data.

Figures 5,6,7 and 8 display the outcomes of
experiments that were done to solve the classifi-
cation problem using the conventional SVM and
its quantum implementation, QSVM, on a massive
data input (> 106 records). Only HTTP Flooding
and Port Scanning attacks are accurately recognised
when using the traditional SVM.

A large majority of the remaining classes’ accu-
racy falls between the ranges of 0.4 and 0.8. The
ACK Flooding attack’s network streams were essen-
tially undefinable. The categorization was carried
out with a 98% accuracy using QSVM.

The outcomes of the trials using the traditional
CNN and its quantum implementation, QCNN, are
displayed in Figures 9,10,11 and 12. The superi-
ority of the quantum technique over the traditional
one is also shown by neural networks. The confu-
sion matrix indicates that, like with the QSVM, 98%
of typical packets can be detected accurately. The
ROC curves show that QCNN outperforms QSVM
in terms of performance.

The training times for the various quantities of
input datasets used by the QML algorithms are
shown in Table 1 for comparison. On a large input,
QSVM and QCNN can be trained around twice
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FIGURE 5. Graph of Intrusion detection results
with conventional SVM
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FIGURE 6. Intrusion detectionresults with con-
ventional SVM

as quickly, and this priority increases as the input
data volume increases. The QML on the Tensor-
flow Quantum framework is also used to achieve the
QML classifier’s priority on the same datasets. The
trials’ findings have shown that QML is superior to
traditional ML-based detectors in classifying large
amounts of input data.

The QML-based intrusion detection method is
more effective than a conventional ML method
when protecting a large-scale network with a large
volume of security-relevant data. The promise of
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FIGURE 7. Graph of Intrusion detection results
with QSVM
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FIGURE 8.
QSVM

Intrusion detection results with

the quantum apparatus on big data inputs has been
demonstrated by comparison of the QML detectors
built on the QSVM and QCNN classifiers against the
traditional SVM and QCNN detectors.

Both in accuracy and performance, the QML-
based approaches have overtaken the ML-based
implementations. The quantum technique clearly
outperforms the traditional ML classifiers when
compared to them on large stream datasets (e.g.,
QSVM and QCNN classification accuracy is 98%).

The training time has been cut in half or more as
a result of QML.
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7. Covid-19 Classification: Case Study II

The case study provided in (Foy) investigates the
QML and classical machine learning approaches for
the analysis of covid-19 images. It consists of 2
phases: in phase I, synthetic CT images are gen-
erated, through the conditional adversarial network
(CGAN) to increase the size of the dataset for accu-
rate training and testing. In phase II, the classifica-
tion of COVID-19/healthy images are performed, in
which two models are proposed: CML and QML.

Synthetic data is generated by applying a mod-
ified Conditional Generative Adversarial Network
architecture. These images are supplied to Classical
Machine Learning and Quanvolutional Neural Net-
work models.

7.1. CML Model

The CML model is proposed for classification which
comprises three kinds of layers such as 01 convolu-
tional, 01 fatten, and 02 dense layers. The convo-
lutional layers are primary building blocks in CNN,
which maps the input images size of 128 x 128 x
3 with 3 x 3 kernel size and output in the form of
activation which is mathematically explained as fol-
lows:

Glm, n] = (f* Wmn] =Y ;3 h[j, kI f[m,
n-k |

where f denotes input images, h represents ker-
nel size, and m, n symbolizes the row and col-
umn, respectively. The fatten layer is applied to col-
lapsed spatial input dimensions into channel dimen-
sion height x width x channel. The dense layer is
the layer of a regular neuron of the neural network,
in which neurons receive input from all neurons
from the preceding layers and connected densely.

Output = activation(dot(input, kernel) + bias

The ReLLU and softmax activation functions are
utilized with the number of neurons such as 13 and
02, respectively. The model is trained on the hyper-
parameters that are selected after the comprehensive
experiment as shown in figure 14.

7.2. ONN Model

A new QNN contains three kinds of layers, such as
4-Qubit-quantum layers, 03-dense layers with spec-
ified activation units, and drop-out layers. The quan-
tum layer is added to replace the convolutional layer.
The 4-bit quantum is used to generate the 20 x 20-
dimension quantum images. The quantum generated
images are learned in a pipeline; then, a dense layer
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Optimizer REMSprop

Batch-Size 26

Epochs 100

Loss Sparse cat-
egorical cross-
entropy

FIGURE 14. Training hyperparameters of the
CML model

by ReLLU and softmax with different activation units
are applied. The model learning parameters are the
same as CML model for the fair comparison among
these two architectures such as CML and QNN.

The quantum generated images are transferred to
QNN, where 03 dense layers are used by 60, 500
neurons with ReLLU activation and 02 neurons with
softmax for features mapping. The 0.5 drop-outs are
utilized.

These 2 models are evaluated using 2 datasets, the
UCSD-AI4H/COVID-CT dataset and a dataset col-
lected from POF Hospital Pakistan. Table 3 provides
a comprehensive overview of the datasets

The result for both models are given in the form
of tables and graphs.

Figure 16 presents the classification results using
CML and QNN models using 0.4 and 0.5 cross-
validation on the benchmark datasets, where the red
line and blue line show the results of quantum (QNN
model) and without quantum layers (CML-model)
respectively.

Lung CT images are classified using two architec-
tures such as CML and QNN.

Rel Datasets Method Results (Fe)

Yang et al. [53] UCSD-AI4H/! 50 residual model 0.89 AC

Horry et al. [54] COVID-CT  yGG-16 0.79
VGG-19 0.78
Xception 0.70

Inception ResNet  0.63
Inceptionv3 0.71

NasNet large 0.64
DenseNetl 21 0.75
ResNet30v2 0.66
Burgos [53] Inception 0.85
Wang et al. [56] COVID-Net 0.78
Ewen and Khan DenseNetl 69 0.87
[57]
Proposed method QNN 0.96

FIGURE 15. Comparison of the outcomes
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FIGURE 16. Classificationresults on CML and QNN model on 0.4 and 0.5 cross- validation: a., b
Chinesedataset and on 0.4 and 0.5 cross-validation. C, d POF Hospital on 0.4 and 0.5cross-validation

UCSD-AMH/COVID-CT

Actual images Synthetic images penerated  Total images

POF

Huospital Pakistan

Actual images

Synthetic images generated  Total images

using CGAN Actual 4 synthetic using CGAN Actual 4 synthetic
Healthy slices COVID-19 Healthy slices COVID-19 Healthy slices: Healthy slices COVID-19 Healthy COVID-19 Healthy slices:
slices slices 4064 406 =812 slices slices shices 4127 44127 =8251
406 406 406 406 Covid-15: 4127 5421 8254 10,842 Covid-15-
4064+ 406=812 542145421 = 10842

FIGURE 17. Dataset descriptions

Experimental outcomes manifested that QNN
performed better on both datasets as compared to the
CML.

8. Fake News Detection: Case Study III

Machine learning can be used to detect fake news
in an efficient manner, according to numerous
research. However, machine learning algorithms
experience challenges with efficiency as dataset
sizes increase. You can use quantum machine learn-
ing to solve this problem. Research has shown that
quantum computing can be used to tackle issues that
require a lot of computation, and quantum methods
can speed up the same problems by an exponen-
tial or quadratic factor. In the case study provided
in (Amin et al.) , we will be looking into a fake news

International Research Journal on Advanced Science Hub (IRJASH)

detection system using the quantum k-nearest neigh-
bors machine learning model (QKNN) with genec-
tic and evolutionary feature selection (GEFeS) com-
pare the performance with the traditional K-Nearest
Neighbors model (KNN).

The procedure adapted for evaluation in (Kalinin
and Krundyshev) is given in Fig. 18.

8.1. Dataset

The dataset used in (Rajashekhar, Pravin, and
Thiruppathi) was chosen from BuzzFace, which
contains 2282 news stories and postings that were
gathered from Facebook during the 2016 US Pres-
idential election. There are four categories for all
articles and posts: mainly true, mostly false, mixed
true and false, and no factual content. The “no fac-
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( Data Preprocessing

1. Load data from BuzzFace

(7 z

2. Remove 'no factual contect’ article, Feature Selection

marge "mostly false” and "mixture of

t d false” articles into "faki 3 .

crl‘:::nandalim -rfniiﬂrza-ﬁa:ﬁf,:is »| Perlorm GEFeS with a 0.5 as threshold

“true news”

3, Standardize the dataset

¥
i P
| QKNN Evaluation Data Mapping W
Test QKNN models with different k the it ta in ntum
values from 2 to 20 with the BuzzFace 2::1'; e it Inko et
dataset with selected features
J
A
( Result Analysis

The performance of each model is
evaluated by the accuracy.

FIGURE 18. The procedure adapted

tual material” class of articles and posts are excluded
from the dataset in this experiment. Additionally,
the ”mainly false” or "combination of true and false”
articles or posts are combined into a single class
termed “fake news,” while the remaining data are
designated as “real news.” The dataset consists of
2018 articles and posts with 179 features after 264
articles and posts with the label “no factual mate-
rial” were removed. The final dataset is divided into
a training set (80%) and a testing set (20%).

8.2. Feature Selection

For feature selection, GEFeS is used with a thresh-
old of 0.5. The feature masks are evolved using
a steady state genetic algorithm every generation.
Twenty randomly generated feature masks (FM)
make up the initial population. The performance of
an FM is assessed using the KNN model’s accuracy.
Each generation will produce a new FM to replace
the FM with the lowest accuracy. The offspring is
produced by mutation and crossover from two ran-
domly chosen population members (Wesley, Quinn,
and Mao) . The population of feature masks evolves
and reflects optimum feature subsets after 1600 iter-
ations of the method. A distinct K value is used
for the KNN model inside the GEFeS method 19
times. There are 19 evolved populations of feature
masks corresponding to the various k values utilised
in the KNN model as a result of all GEFeS execu-
tions. The ideal person is chosen for each popula-
tion, and the corresponding characteristic masks are
kept. To construct GEFeS-reduced datasets for the
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various KNN K values, these feature masks are sep-
arately applied to the dataset.

8.3. Quantum Machine Learning

We evaluate the QKNN models using various k val-
ues from 2 to 20 with the corresponding GEFeS-
reduced datasets in order to investigate the use of
QKNN in fake news identification. We further
decrease the dataset by using principal component
analysis to transfer the data to the quantum space
(PCA). Accuracy is used to gauge each QKNN
model’s performance (Branchi, Pereira, and Piran-
dola) .

Fig. 19 shows the results of the study for both
the KNN model and the QKNN model with GEFeS.
The variable quantity K value for each model is dis-
played on the x-axis, while the model correctness is
displayed on the y-axis. In all K values, QKNN with
GEFeS outperforms conventional KNN. As the K
value rises, both models have a tendency to become
more accurate. At most, QKNN with GEFeS out-
performs the conventional KNN by 5%, and at the
very least, by 0.029%. The data shown can also be
used to determine the best K value for each model.

For the conventional KNN, the accuracy reaches
its maximum at a value of 83.71% with a k value
of 18. However, the accuracy of the QKNN using
GEFeS peaks at 87.12% and k = 13. In relation to
this problem, each of these peaks indicate the ideal
k values for both the models.

04712

FIGURE 19. The accuracy of KNN and QKNN
with GERFeS

In conclusion, the results show that for all val-
ues of K, the QKNN with GEFeS outperforms the
conventional KNN. In Figure 20, the overall perfor-
mance is shown. The average performance of the
conventional KNN and QKNN with GEFeS across
all k values is displayed in the following table. The
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KNN
Avg  0.8179

QKNN with GEFeS
0.8380

FIGURE 20. The Overall AverageAccuracy of
the KNN and the QKNN with GERFeS

QKNN with GEFeS model performs on average
83.8% better than the traditional KNN model overall
(81.79%). These show that the QKNN with GEFeS
is a top performer on average.

9. Conclusion

In this investigation, our goal was to summarize the
effects of quantum computing on machine learn-
ing. Although most of the research in these fields
was mainly theoretical until recently, we now pos-
sess real quantum machine learning algorithms. As
predicted, these algorithms surpass their traditional
counterparts in terms of speed and efficiency. By
combining machine learning with quantum comput-
ers, classical algorithms can frequently be executed
at a much faster pace.

The potential influence of quantum computing on
machine learning is enormous. As quantum com-
puters with more qubits become available, we will
be able to test more quantum algorithms, providing
us with a complete understanding of the impact that
quantum computers will have on machine learning.

Moreover, we explored three case studies on the
application of QML and compared the outcomes
with their classical counterparts. It is evident from
the results that QML algorithms and methods pro-
vide faster, more efficient, and more accurate solu-
tions in all three cases. This demonstrates the
potential of quantum machine learning in real-world
applications.
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