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Abstract
In recent years, container-based virtualization has gained popularity due to its
ease of deployment and agility in cloud resource provisioning. The traditional
virtual machine (VM) is based on modern innovation, has superseded technol-
ogy in cloud computing which is known as containerization technology, and
it is superior in terms of overall performance, reliability and efficiency. Con-
tainerized clouds deliver superior performance because they make the most of
the resources available at the host level and make use of a load-balancing strat-
egy. In order to accomplish this goal, the focus of this article is on equitably
dividing of the workload across all of the available servers. In this research,
we proposed a Honeybee Mating Algorithm (HBMA) to combat the issue of
load balancing in the container-based cloud environment by considering the
deadline of tasks. We compared our findings to those of the Grey Wolf Opti-
mization (GWO), Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) Algorithms. We assessed the performance of the proposed methods by
considering the impact of parameters such as load variation and makespan.
According to the findings of our proposed method, almost the tasks were com-
pleted within the deadline, and the HBMA performed significantly better than
any of the other strategies in terms of load variance and makespan.

1. Introduction
Cloud computing is a model for enabling multi-
ple users to pool and share an organization’s physi-
cal and logical computing resources over the Inter-
net (Dimitri). Since it operates on a pay-as-you-go
basis, it has attracted a large customer base. Pay-
as-you-go is a business strategy in which clients
pay in advance for the resources or services they
will utilize (Dimitri). Users can adjust the num-
ber of available resources to meet their changing
business needs while service costs are reduced.

Obtaining any service from the cloud requires the
user to sign up in the service provider portal and
submit a web request (Niyogi, Chronopoulos, and
Zomaya). It is the responsibility of the cloud
service provider to manage the available comput-
ing resources and respond to requests from var-
ious clients. The cloud service provider imple-
ments numerous scheduling strategies for effective
resource management (Gawali and Shinde). Cloud
computing’s allocation and scheduling of resources
has a profound impact on the efficacy of all its oper-
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ations. As a result, cloud-based job scheduling, and
resource allocation have attracted the attention of
numerous academics (Gawali and Shinde).

FIGURE 1. CaaS Model

Containers as a Service (CaaS) is a new cloud
service model developed by various cloud service
providers in addition to the more traditional Infras-
tructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Services (SaaS) models.
When it comes to cloud computing, a container is
a virtualization method at the OS-level (Maenhaut
et al.). The image of a container is an indepen-
dent, lightweight, executable package of software
that contains the application code, runtime, settings
system tools and libraries (Patra et al.). It has every-
thing that’s required to run the program. The OS-
level virtualization is built on containers, which are
the essential building blocks (Maenhaut et al.). It
eliminates the requirement for a hypervisor or other
monitoring middleware by creating sandboxed vir-
tual environments. With the help of an OS container
or an application container, it is possible to imple-
ment virtualization at the OS-level (Maenhaut et al.).
In this work, we focus on the operating system con-
tainer. When it comes to the packaging of various
resources like languages, databases, and libraries,
OS containers are the way to go. When the pro-
gram is to be packaged as a component, an applica-
tion container is an ideal choice. Figure 1 depicts
containerization.

The CaaS paradigm executes tasks within a con-
tainer scheduled in virtual machines (VMs), with
VMs deployed on a physical system. Figure 1
depicts the architecture of a CaaS paradigm, which
combines system and OS-level virtualization. Under
a CaaS approach, customers can leverage OS-level

virtualization to operate, manage, resize, upload,
and organize containers. It is very portable because
once a container for an application is created, it has
all the components required to run the application.
Security is one of the primary reasons for utilising
the CaaS model. Compared to containers, VMs are
more isolated. So, they will be more isolated and
secure if we group them and deploy them on mul-
tiple VMs rather than operating all of the contain-
ers on a single server. It enables the user to use
a different private or public cloud environment to
run that application. This makes it simple for the
user to transit between cloud service providers. In
the cloud computing services hierarchy, CaaS is in
the middle, between IaaS and PaaS. CaaS is a sub-
set IaaS. Google Kubernetes and Docker Swarm are
two major CaaS orchestration solutions.

The primary goal of task scheduling is to make
optimal use of available resources and to arrange
incoming requests in such a way that they may all
be carried out by the given deadline. With cloud
computing, several clients can share the same com-
putational resource and run multiple tasks simulta-
neously. As a result, smaller tasks may miss their
deadline and take a long time to complete if the sys-
tem does not use an appropriate scheduling mecha-
nism. The following are the primary contributions:
•Honey bee mating based evolutionary algorithm

is proposed to handle the issue of load balancing in
the container orchestration based cloud platform.
• The load variance and make span attributes are

considered to compare the efficacy of the proposed
model with other evolutionary based containerized
cloud model.

The remaining sections of the paper are laid out
as follows: Section 2 presents the related research
and development efforts made in cloud-based load
balancing and resource allocation. Different CaaS
cloud architecture components are illustrated in Sec-
tion 3. In Section 4, we detail the suggested system
model and algorithms. The findings and discussions
from the proposed work are presented in Section 5.
In Section 6, we conclude with the proposed work.

2. Related Work

Several meta-heuristics can be used to identify
optimal solutions to numerous optimization prob-
lems. It has become increasingly common to uti-
lize meta-heuristic algorithms to find optimal solu-
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tions to problems (Sanshi, D., and Vatambeti).
Meta-heuristic techniques are attractive for com-
plex problem-solving because they can quickly and
effectively deliver good solutions even for enor-
mously huge problems.

In order to improve the efficiency of cloud sys-
tems, it is important to schedule tasks and distribute
workloads among all processing nodes. In (T. Wang
et al.), the author presented a double-fitness adap-
tive method for task scheduling and load-balancing
genetic algorithm (JLGA). In (B. Wang and Li), a
Multi- Population Genetic Algorithm (MPGA) is
used to schedule jobs in a cloud environment while
maintaining fair load distribution. In (Babbar et
al.), genetic load-balancing technique is proposed
for multimedia applications, which reduces user
wait times by spreading the workload over multiple
servers.

In (Pradhan and Bisoy), A. Pradhan et.al.
suggested a modified PSO method to decrease
makespan and maximize resource consumption and
load balance. Load balancing and energy effi-
ciency were proposed by FIMPSO (Elhoseny et al.).
This algorithm reduces search space and improve
responsiveness, throughput, makespan, execution
time, and resource consumption. In (Alguliyev,
Imamverdiyev, and Abdullayeva), authors presented
a mechanism to efficiently move VM overload
duties to equivalent cloud VMs. The optimiza-
tion model minimizes task execution and trans-
fer time. They aim to reduce transfer and execu-
tion time. (Alguliyev, Imamverdiyev, and Abdul-
layeva) proposes a PSO-based static task schedul-
ing technique for cloud-based independent and non-
preemptive workloads.

In (Hussein, Mousa, and Alqarni), Hussein, M.K.
et.al. proposed an ant colony optimization (ACO)
based hybrid model for container placement in cloud
environments to reduce the makespan of container
scheduling and load balancing across the physical
server. A GWO- based technique was suggested by
authors in (Sefati, Mousavinasab, and Farkhady) to
the load of server balanced by considering reliability
and capacity of resources. The proposed approach
searches for idle nodes and then tries to establish
the fitness function of individual node to distribute
the load. A GWO-based load-balancing method has
been developed in (Patel, Patra, and B. Sahoo) for a
containerized cloud system.

3. Container as a Service Cloud Architecture
CaaS cloud architecture shown in figure 2. includes
the following components:

3.1. Container Orchestration Platform:
CaaS cloud architecture relies on the container
orchestration platform. It automates container scal-
ing, deployment by using container orchestration
platforms such as Kubernetes, Docker Swarm, and
Mesos are popular.

3.2. Virtual Machines:
A cluster of VMs hosts the container orchestration
platform, which deploys containers. VMs isolate
and secure host-based containers.

3.3. Resource Manager and Load Balancers:
The resource manager manages CaaS cluster
resources. It guarantees enough virtual computers,
storage, and other resources for cluster applications.
The resource management monitors resource uti-
lization and scales the cluster according to demand.
The load balancer distributes traffic among several
application instances in various containers. It keeps
the app available and prepared to manage traffic.

3.4. Monitoring and Logging:
Any cloud architecture needs monitoring and log-
ging, including CaaS. CaaS systems include mon-
itoring and logging capabilities to help developers
track application health and performance.

3.5. Container Mapper:
The container broker allocates containers to cluster
virtual machines. Based on resources, application
requirements, and other variables, it chooses a vir-
tual machine to deploy a container. Container map-
ping optimizes resource use and eliminates virtual
machine overload.

3.6. Container Scheduler:
The container scheduler schedules and manages
CaaS cluster containers. It starts, monitors, and
restarts containers. The container scheduler keeps
programmes available and scalable.

4. Proposed System Model and Fitness Function
Formulation

The proposed system model is comprehensively
described in this section. It comprises five pri-
mary parts: the physical server model, the container
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model, the virtual machine (VM) model, the task
model, and the scheduling model.

4.1. System Model

FIGURE 2. Container Scheduling Architecture
in Cloud Environment

4.2. Container Model:
The model of a container based cloud system is
defined by a collection of physical servers that offer
the framework for producing containers through OS
virtualization. To run an application, the contain-
ers obtain the necessary binaries and libraries from
the host operating system running on the phys-
ical server. Hence, each container Cj is mod-
elled by using three parameters based the configu-
ration of physical server Pi. C ={Cj

i, memoryj
i,

processingj
i}, where Cj

i denotes the jthcontainer on
the ith server, memoryj

i denotes the size of phys-
ical memory for jth container on the ith server, and
processingj

i indicates the speed at which the jth con-
tainer on the ith server processes data.

4.3. Virtual Machine Model:
A VM is a software emulation of a physical server.
Let there be a set of virtual machines denoted by
the VM = {vm1, vm2,. . . , vml}, where each virtual
machine vm1 creates a virtualized environment with
its own operating system (OS), which can run mul-
tiple containers on top of the underlying hardware.
Each VM is isolated from the other VMs running
on the same physical machine with its own virtu-
alized hardware resources (such as CPU, memory,
storage, and network) that are allocated from the
host machine’s pool of resources. A VM is a server
instance that runs a container.

4.4. Scheduling Model :
It is the job of the scheduling model in container
orchestration platforms to distribute containers to
the available physical servers based on how those
servers are currently utilizing their resources and
any other applicable constraints. The scheduling
strategy makes certain that the containers are dis-
persed throughout the servers in a manner that
allows for the highest possible level of resource uti-
lization while also reducing the likelihood of an
interruption in service.

4.5. Task Model :
The set of tasks, denoted by T = {t1, t2,..,tn} is com-
posed of n tasks that arrive in real time from n users.
In T, each task tk has four properties, Task Id (Tid),
Arrival Time (Tarr), Task Size (Ts) and Deadline
(Tdl). Due to the task heterogeneity, the execution
time T ij

kexec of the kth task on the jth container of the
ith server can be computed as in eq. (1).

T ij
kexec =

Tsk

processingji
(1)

The total completion time T ij
kcompletion of the kth task

on the jth container of the ith server can be computed
as in eq. (2).

T ij
kcompletion = Tkwating + T ij

kexec (2)

Where, Tkwating stands for the total waiting time of
the kth task.

Therefore, makespan, which measures the sum of
all the completion times for all the tasks, is com-
puted as in eq. (3).

makespan =
∑n

k Tkcompetion (3)

Server load variance measures how spread out the
server load data is from the mean load. It is a mea-
sure of the average distance between each load read-
ing and the mean load and is calculated by sum-
ming the squared differences between each induvial
server load and the mean load of the server, and then
dividing by the number of servers as shown in eq.
(4)

Ploadvar =

∑n
i=1 (Piload −

−
Piload)

2

n
(4)

Where, Ploadvar is the load variation of all the physi-
cal server and Piload is the load of ith physical server.

−
Pload is the mean load of the server and n is the total
number of servers.

429



Kodanda Dhar Naik, Rashmi Ranjan Sahoo and Sanjay Kumar Kuanar 2023, Vol. 05, Issue 05S May

4.6. Fitness Function
In general, a fitness functions is comprise of several
Objective functions as: F (x) = {f1 (x), f2 (x), . . . , fn
(x)}, where fn (x) represents nth objective function.
• The first objective is to minimize the makespan

as given in eq. (5)

f1(makespan) = min(makespan) (5)

• The second objective (eq. (6)) is to minimize the
workload variance of the physical server because,
the variance is used to assess the level of variability
in the server load, and a higher variance indicates
a greater level of variability and unpredictability in
the server load. Therefore,

f2(Ploadvar) = min(Ploadvar) (6)

The fitness function can be defined as in eq. (7):

F = w1 ∗ f 1 (makespan) +
w2 ∗ f 2 (P loadvar)

(7)

Where, w1 and w2 are weight factor and w1 + w2 =
1.

5. Honey Bee Mating Algorithm for Container
Scheduling

Honey bees are social insects that can only thrive in
a colony. The honey bee colony consists of three dis-
tinct types of individuals: the queen (the ” breeding
female”), the drones (the ”males”), and the work-
ers (the ”nonbreeding females”) (R. R. Sahoo et
al.). Each individual performs a specific task for the
colony and has developed unique instincts to meet
the demands of that task. The HBMO Algorithm
incorporates a number of distinct phases, and Fig.
3 illustrates the primary steps that are involved in
the HBMA process. Probabilistically, drone and a
queen mate using an annealing function as given eq.
(8):

prod(D) = exp(−D(f)/S(t)) (8)

where Prob (D) is the probability of a successful
mating when drone D’s sperm are added to the
queen’s spermatheca, D(f) is the absolute differ-
ence between drone D’s fitness and the fitness of the
queen, and S(t) is the momentum of the queen at
time t. The fitness of each bee is calculated by using

FIGURE 3. Honeybee mating procedure

eq. (7). When the queen is in it’s highest speed or
when the drone has the same degree of fitness as the
queen, the chance of mating is high. The queen’s
momentum decreases after every spatial transition
according to the eq. (9) and eq. (10):

S(t+ 1) = k × S(t) (9)

E(t+ 1) = m× E(t) (10)

where k and m are factors in the range [0, 1] denot-
ing the relative speeds and energies dissipated at
each stage of the process. Initially, the queen’s speed
is generated at random. Several mating flights are
accomplished. Drones are generated at random at
the starting of a mating flight, and the queen chooses
one of them according to the eq. (8). If a drone
and a queen successfully mate, the drone’s sperm
is kept in the queen’s spermatheca (i.e., the drone
meets the probabilistic decision criteria). The drone
and the queen’s genotypes are crossed to produce a
new brood, that can be enhanced utilizing a work-
force engaged in local search. Workers in the wild
only take care of the young, so they aren’t counted
as individuals in the population count; instead, they
are put to use in local search methods designed to
boost the quality of the broods born from the queen’s
mating flights. If the new brood is superior to the
present queen, it will replace her. If the brood is
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unable to produce a new queen, one of its members
will serve as a drone during the subsequent queen’s
mating flight.

Algorithm Honey Bee Mating Algorithm
Input: Nc, Nv, Nt, H, pop size
Output: Best Solution
//Initialization of Parameters
H← Number of Honey Bees in Population
Pop size← Population Size
Q← Queen Bee
Nitr ← Number of Iteration
Nc← Number of container to Schedule
Nt← Number of Tasks
Nv ← Number of Virtual Machines
Fitness val← Fitness value
D← Number of Drones
B← Number of Broods
W← Number of worker Bees
Smax ← Queen’s highest Speed at the beginning

of the mating flight
Smin← Queen’s lowest speed
Emax← Queen’s highest Energy
Emin← Queen’s lowest Energy
K← Reduction rate of Energy
m← Reduction rate of Speed
1. for i← 1 to H do
2. Pop← create chromosome (Nc, Nv, Nt)
3. end for
4. for i← 1 to Nitr do
5. Fitness val← fitness(Pop)
6. Choose the most fit bee as Queen &
set fitness Q =fitness Best Bee;
7. for Iter =1 to Nitr do
8. begin
9. while energy >= Emin and Q’s Spermathica is

NOT full do
10. begin
11. choose a drone based on the Probability given

in eq. (8);
12. keep the drone in spermatheca of Q;
13. ..update the energy and speed of queen as per

(9) and (10);
14. end while
15. for i=1 to B do
16. begin
17. Broodi=Dronei+rand(0,1)*(Q -Dronei);
18. Enhance the broods by local search;
19. end for
20. Choose the fittest as best brood;

21. if fitness best brood > fitness Q then
22. Q = fitness best brood;
23. end if
24. end for
25. return Q;// Best Solution

6. Simulation Results and Discussion
The Table 1 contains the list of parameters that were
taken into consideration to carry out our experiment.
All of the tests were performed in a rigid setting.
The experiment is conducted with varied numbers of
containers and tasks, ranging from 10 to 40 contain-
ers and 500 to 2000 tasks, respectively. After 500
repetitions, the load variance and makespan both
remain constant. Consequently, the number of iter-
ations is set to 500 for the experiments. The initial
population is 500. We varied different parameters
given in Table 1 and observed our experiment.

TABLE 1. Testbed Setting Parameters
Model Parameters Values

Cloud
System

Number of Tasks 500-2000
Task Size (MI) 3000 to 5000
Arrival Time of Tasks 0 to 500 unit
Deadline of Tasks Arrival Time +

U (2,15)
Number of Virtual
Machine (VM)

10 – 20

Number of Containers 10, 20, 30, 40
Execution rate of
containers (MIPS)

2000-5000

HBMA

No. of Iteration 500
Population Size 1000
No. of Drones 999
No. of Broods 500
Capacity of
Spermathica

999

Momentum of Queen
bound

50-100

Energy of Queen bound 50-100

It is found that almost all tasks were com-
pleted within their assigned deadline. Our experi-
ment includes server load variation and makespan.
Makespan is the overall time required to accom-
plish all tasks. Low load variance indicates that
even workload is evenly distributed among all the
physical servers. The proposed Honey Bee Mating
Algorithm outperformed all three techniques utiliz-
ing these two parameters.
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Figure 4. depicts the variance of load among dif-
ferent physical servers with 10, 20, 30 and 40 num-
bers containers and a varying number of tasks from
500 to 2000. It can be observed from figure 4 that
the proposed HBMA based model outperforms the
GWO, PSO and GA based models in terms of vari-
ation in server load.

Figure 5. shows the makespan of the different
sets of tasks varying from 500-2000 with 10, 20,
30 and 40 numbers of containers. Further, it can be
observed from figure 5. that the proposed HBMA
based model outperforms the GWO, PSO and GA
based models in terms of makespan.

FIGURE 4. Workload variation with
500,1000,1500,2000 numbers of Tasks

FIGURE 5. Makespan with 500,1000,1500, 2000
numbers tasks

7. Conclusion
Distributing the workload evenly across all servers
while keeping the makespan to a minimum is the pri-
mary emphasis of the work discussed in this paper.
To address the issue of load balancing in the con-
tainerized cloud, a Honey Bee Mating based opti-
mization is proposed. The entire simulation is car-
ried out with four different task sizes ((500, 1000,
1500 and 2000) and container counts (10, 20, 30,
40). Further, taking into account the parameter load
variance and makespan, we compared our findings
to those of the GA, PSO and GWO based methods.
With regards to load variation and makespan, the
experimental results show that the proposed HBMA
based method outperforms all other methods.
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