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1. Introduction 

Recently The evolution of audio technology has 

revolutionized communication and media, yet it has 

also introduced new challenges in verifying the 

authenticity of audio recordings. Historically, audio 

verification relied on manual analysis and 

subjective judgment, processes prone to error and 

inefficiency. With the advent of artificial 

intelligence (AI), particularly in speech synthesis, 

the landscape of audio authentication has 

fundamentally shifted. AI algorithms can now 

generate highly realistic synthetic voices or audios 

that are increasingly hard to distinguish from 

genuine human speech. This technological 

advancement has significant implications across 

various sectors, including media, cybersecurity, and 

law enforcement. The ability to create convincing 

fake audio raises concerns about misinformation, 

privacy violations, and the potential for identity 
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Our project, "AI Formed Audio and Human Audio Detection," addresses the 

limitations of current fake audio detection methods by developing an automated 

end-to-end solution. We leverage a convolutional neural network (CNN) 

framework to efficiently detect human audio using speech waveforms and acoustic 

features like MFCCs, which extract high-level representations and consider 

prosody differences between genuine and fake speech. We utilize the Common 

Voice dataset from Kaggle for authentic human voice samples, and the pyttsx3 

library to convert sentences from the Flickr8k.txt file into male and female 

synthetic voices. Feature selection and extraction techniques focused on MFCCs 

ensure robust feature representation, and the dataset is standardized using a 

Standard Scaler to enhance model performance. Both CNN and the Support Vector 

Machine (SVM) models were used for classification, with CNN model 

outperforming the SVM in accuracy. Prioritizing user-friendliness and 

accessibility, we provide an interactive user interface that accepts audio in various 

formats, such as WAV and MP3. Our approach, combining automated feature 

selection, MFCC-based feature extraction, CNN and SVM modelling, and an 

intuitive interface, accurately detects AI formed audio and human audio, helping 

to safeguard against misinformation and privacy violations while ensuring 

accessibility for a broader audience. 
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fraud. These risks underscore the urgent need for 

automated detection systems capable of accurately 

discerning between AI formed audio and human 

audio. The "AI Formed Audio and Human Audio 

Detection" project addresses these challenges by 

leveraging advanced machine learning (ML) 

techniques, particularly convolutional neural 

networks (CNNs), to enhance audio verification 

capabilities. By analysing speech waveforms and 

extracting acoustic features like as Mel-Frequency 

Cepstral Coefficients (MFCCs), our system aims to 

capture subtle nuances that distinguish genuine 

human speech from synthetic counterparts. This 

paper explores the historical context and evolution 

of audio authentication, highlighting the shift from 

manual methods to automated systems driven by 

AI. It discusses the limitations of existing 

approaches and proposes a comprehensive solution 

that integrates data-driven methodologies with 

user-friendly interfaces. By providing a detailed 

examination of our project's methodology and 

outcomes, we demonstrate how CNNs and MFCCs 

can significantly increase the accuracy and 

reliability of audio detection systems. In summary, 

the integration of AI in audio synthesis presents 

both opportunities and challenges. This 

introduction sets the stage for exploring how 

advancements in machine learning can mitigate the 

risks associated with AI formed audio, ensuring 

trust and security in digital communications and 

media integrity. [1] 

2. Literature Survey 

The literature on detecting AI formed audio and 

deepfake voices showcases diverse methodologies 

and advancements aimed at addressing the ethical 

and security challenges posed by synthetic audio. 

Bird and Lotfi (2023) introduced the DEEP-VOICE 

dataset, focusing on real-time detection of Artificial 

Intelligence (AI) formed audio speech using 

statistical analysis of temporal audio or voices 

features. [2] Their study emphasizes the 

effectiveness of Extreme Gradient Boosting 

(XGBoost) models, achieving an impressive 99.3% 

classification accuracy with rapid processing 

capabilities, crucial for preventing misuse in 

identity theft and social engineering. Lim et al. 

(2022) explored explainable deep learning 

techniques for deepfake voice detection, employing 

methods like Deep Taylor and layer-wise relevance 

propagation (LRP) on CNN and CNN-LSTM 

models. They highlighted the interpretability of 

these models in distinguishing deepfake 

characteristics from genuine audio, crucial for non-

expert users in understanding decision-making 

processes. Hossan et al. (2010) proposed a novel 

MFCC feature extraction method based on 

distributed Discrete Cosine Transform (DCT-II), 

comparing it with conventional techniques using 

Gaussian Mixture Model (GMM) classifiers. Their 

study contributes to enhancing the performance of 

speaker verification systems by improving feature 

extraction techniques. Sharifuddin et al. (2020) 

compared CNNs and SVMs for voice recognition in 

an intelligent wheelchair application, 

demonstrating CNNs' superior accuracy in 

distinguishing between voice commands compared 

to SVMs, despite the latter's faster processing times. 

Their research underscores the trade-offs between 

accuracy and computational efficiency in real-

world applications. Liu et al. (2021) focused on 

identifying fake stereo audio using SVM and CNN 

models, developing algorithms capable of 

effectively detecting manipulated audio content 

through robust feature extraction and classification 

techniques. Their work contributes to enhancing 

audio forensics capabilities in detecting and 

mitigating the spread of fake audio content. Hamza 

et al. (2022) investigated deepfake audio detection 

using MFCC features and machine learning models, 

highlighting SVM's effectiveness in detecting 

different datasets of synthetic audio, underscoring 

its applicability across various scenarios and 

datasets. Wang et al. (2022) presented a fully 

automated end-to-end fake voice detection system 

using a wav2vec pre-trained model and light-

DARTS architecture. Their approach achieves 

exceptional performance on the ASVspoof 2019 

LA dataset, leveraging advanced deep learning 

techniques to optimize neural architectures for 

accurate and efficient detection of fake audio. Rana 

et al. (2022) performed a systematic literature 

review on deepfake detection, categorizing 

methodologies into deep learning-based, classical 

machine learning-based, statistical, and blockchain-

based techniques. They conclude that deep learning 

(DL) approaches generally outperform other 

methods, highlighting ongoing advancements and 

challenges in combating deepfake technologies. 

Lunagaria and Parekh (2020) discussed the 

implications and risks of deepfake audio, 
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emphasizing the role of Python and deep learning in 

developing accurate models for distinguishing 

between real and fake audio. Their study 

underscores the need for robust detection 

mechanisms to mitigate potential societal and 

security risks associated with deepfake 

technologies. [3-5] 

3. Method  

3.1 Proposed System 

Designing a system architecture for AI Formed 

audio and human audio detection involves several 

components working together to analyze and 

classify audio signals accurately. The system's 

functioning is divided into five phases: Data 

Collection, Audio Processing, Feature Extraction, 

Training Models, and Classification. [6] 

3.2 Data Collection 

The data collection process for the AI formed audio 

and human audio detection system involves 

curating a comprehensive dataset consisting of over 

25,000 audio files each of human and AI formed 

audio, totaling 5.3 GB. This dataset forms the 

foundation for training the model. 

3.2.1 Human Audio Dataset 

The human audio files are sourced from the Kaggle 

dataset "Common Voice," which includes audio 

data in MP3 format. This dataset provides a rich 

variety of speakers' demographics, including age 

groups (Teens to Nineties), gender (Male, Female, 

Other), and accents (e.g., US English, Australian 

English, Indian English). The audio data is 

organized into folders based on corresponding CSV 

files, facilitating easy access and management. This 

structure ensures that the diverse range of accents 

and demographics can be systematically 

incorporated into the training process. The 

Common Voice dataset is publicly available at 

[Common Voice Dataset] 

(https://www.kaggle.com/datasets/mozillaorg/com

mon-voice). 

3.2.2 AI Formed Audio Dataset 

The AI formed audio files are created using the 

pyttsx3 library. Sentences for generating these 

audio files are sourced from the "Flick8k.token.txt" 

file, which contains over 12,000 sentences from a 

GitHub project named MUTT. Using pyttsx3, these 

sentences are converted into audio in both male and 

female voices, resulting in more than 24,000 AI 

formed audio files. This approach ensures a 

balanced representation of genders in the AI formed 

audio dataset, mirroring the diversity found in the 

human audio dataset. The "Flick8k.token.txt" file is 

available at [Flick8k.token.txt] 

(https://github.com/text-machine-

lab/MUTT/blob/master/data/flickr/Flickr8k.token.t

xt). 

3.2.3 Dataset Labeling 

The entire dataset of 25,000 human-formed audio 

and 25,000 AI formed audio files is meticulously 

labeled to distinguish between human and AI 

formed audio content. Proper labeling is critical for 

the supervised learning algorithms employed in the 

system, as it allows the model to learn the 

distinguishing features of human and AI formed 

audio effectively. [7-11] 

3.3 Preprocessing  

This phase involves applying pre-processing 

techniques to the raw audio data. A key technique 

used is Mel-frequency cepstral coefficient (MFCC) 

extraction, where 12 coefficients are extracted from 

each audio file. Additionally, four other relevant 

features are extracted from the audio files. These 

features, along with the pre-processed MFCC 

features, are stored for further processing. Standard 

scaling is applied to standardize features by 

cancelling the mean and scaling to unit variance, 

rescaling values to a scope between 0 and 1. This 

centers the data around the mean and scales it to 

standard deviation of 1, which is useful when the 

distribution of data is unfamiliar or not Gaussian. 

3.3.1 Feature Extraction Using MFCC 

After pre-processing, MFCC feature extraction is 

applied to the pre-processed audio data. The audio 

is segmented into short frames, and a series of 

processing steps, including Fourier transforms, Mel 

filter banks, and cepstral analysis, are performed 

audio to compute the MFCCs. These extracted 

MFCC features are stored for use in model training. 

Other features extracted include Chroma STFT, 

which computes the short-time Fourier transform 

and maps it to 12 pitch classes, Spectral Centroid, 

which measures the centre of mass of the spectrum, 

Spectral Bandwidth, which measures the width of 

spectrum, Spectral Roll off, which identifies the 

frequency next to which a stated percentage of the 

entire spectral energy lies, and Zero Crossing Rate, 

which measures the rate of sign variations in the 

signal. 

3.4 Training Models 

The classification phase employs machine learning 
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algorithms to categorize audio into classes. The 

system uses Convolutional Neural Networks 

(CNN) and Support Vector Machines (SVM) for 

this purpose.  

3.4.1 Convolutional Neural Networks 

(CNN)  

CNNs are deep learning models commonly used for 

image classification, object recognition, and tasks 

involving structured grid-like data, such as images 

and time-series data. CNNs apply filters (kernels) 

across the input data to extract hierarchical features. 

They perform convolutions, pooling operations, 

and nonlinear activation functions to learn 

increasingly abstract representations of features 

present in the input. This hierarchical feature 

learning captures patterns at various levels of 

abstraction, from easy edges and textures to 

complex object parts and shapes. CNNs are well-

suited for image-related functions due to their 

capacity to spontaneously learn relevant 

information from raw data. They have shown 

remarkable performance in tasks like as audio 

classification, object detection, and semantic 

segmentation. CNNs significantly reduce need for 

manual feature engineering as they learn 

hierarchical representations directly from the data. 

• Activation Function: An activation function, 

such as Rectified Linear Unit (ReLU), is applied 

after as in every convolutional layer to introduce 

non-linearity, granting the network to learn 

complex relationships within the data. ReLU 

helps mitigate the vanishing gradient problem 

and permits faster training equated to other 

activation functions like sigmoid or tanh. 

• SoftMax: The SoftMax activation function is 

utilized in the output layer for multi-class 

classification problems. It transforms raw output 

scores (logits) into probabilities, providing a 

probability distribution over all possible classes. 

• Dense (Fully Connected) Layer: Dense layers, 

also known as fully connected layers, receive 

input from all neurons in the past layer. In audio 

CNNs, dense layers typically follow 

convolutional layers and learn to combine 

extracted features for classification. They use 

activation functions like ReLU to introduce non-

linearity and learn complex relationships in the 

data. 

• Output Layer: The output layer of a CNN for 

audio classification tasks typically uses SoftMax 

activation for multi-class classification. SoftMax 

converts the final layer's raw output into class 

probabilities. The predicted class is determined 

by choosing the class with highest probability. 

3.4.2 Support Vector Machines (SVM) 

The SVM model includes data loading and 

preprocessing, model training, and audio feature 

extraction and prediction. Data loading involves 

importing necessary libraries and loading a CSV 

file named "Features_final.csv" into a Pandas 

DataFrame. Label encoding transforms categorical 

labels into numerical values for machine learning 

algorithms. Feature scaling standardizes the feature 

set to improve model performance. An instance of 

SVR (Support Vector Regressor) is initialized and 

trained using the standardized feature set. The 

trained SVM model is saved for future use, 

allowing it to be reused without retraining. 

3.5 Audio Feature Extraction and Prediction 

A function named get(file_name) is defined to 

perform audio feature extraction and prediction. It 

loads an audio file and extracts feature such as 

chroma_stft, spectral centroid, spectral bandwidth, 

spectral rolloff, zero crossing rate, and MFCCs. 

These features are computed and stored as their 

mean values. The saved SVM model is loaded, and 

the extracted features are fed into the SVM model 

to make a prediction. The predicted output is 

decoded to map the numerical value to a 

corresponding class label, such as "AI Formed 

audio" or "Human Voice." This proposed system 

provides a comprehensive approach to detecting AI 

formed audio and human audio, utilizing CNN and 

SVM models for accurate classification and 

leveraging advanced feature extraction techniques 

to Enhance Performance. Figure 1 shows System 

Architecture. 

 

 
Figure 1 System Architecture 
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4. Algorithms 

4.1 CNN 

4.1.1 Data Pre-Processing 

Load the dataset containing audio features from 

"Features_final.csv" using Pandas. Extract the 

target variable (genre_list) and encode it using 

LabelEncoder to convert categorical labels into 

numerical format (0 and 1 in this case). Standardize 

the input features (X) using StandardScaler to 

ensure all features have mean of 0 and a standard 

deviation of 1, which helps in the training the model 

efficiently. Figure 2 shows CNN Architecture. 

 

 
Figure 2 CNN Architecture 

 

4.1.2 Model Creation 

Initialize a Sequential model using Keras, high-

level neural networks API. Add layers to the model: 

Input Layer: Configure the input layer to accept the 

pre-processed features with an input shape 

corresponding to the number of features in the 

dataset. Dense Layers: Add multiple dense layers 

with different numbers of neurons (1024, 512, 256, 

128, 64, 32, 16, 8, 4) and 'relu' activation function, 

which introduces non-linearity into the model and 

learns high-level representations from input 

features. Output Layer: Add an output layer with 2 

neurons (corresponding to the two categories: AI 

formed audio and human-formed audio) and 

'softmax' activation function, which outputs 

probabilities for as in every class. 

4.1.3 Model Compilation 

Compile the model using the Adam optimizer, 

which is efficient for training deep learning models. 

Choose 'sparse_categorical_crossentropy' as the 

loss function since it's suitable for multi-class 

classification tasks. Specify 'accuracy' as the metric 

to monitor during training, which measures the 

model's performance. 

4.1.4 Training 

Set the number of epochs to 25, signifying the 

number of times the model will be trained on the 

whole data-set. Fit the model to the preprocessed 

input data (X) and encoded object labels (y) using 

the specified number of epochs. During training, the 

model adapts its internal parameters (weights and 

biases) to diminish the loss function and improve 

accuracy. 

4.1.5 Model Saving 

Save the trained model ('NN.h5') to a file for future 

use or deployment. Figure 3 Shows MFCC Feature. 

4.2 MFCCs Feature Extraction 
 

 
Figure 3 MFCCs Feature Representation 

 

4.2.1 Initialization 

Begin by importing crucial libraries such as librosa 

for advanced audio processing, pandas for data 

management, numpy for numerical computations, 

matplotlib for graphical representation, os for file 

operations, PIL for image processing, pathlib for 

path manipulation, csv for file handling, keras for 

deep learning tasks, and warnings for managing 

system alerts. Define the structure of the CSV file 

by specifying the header, comprising features like 

chroma_stft, spectral_centroid, 

spectral_bandwidth, spectral_rolloff, 

zero_crossing_rate, and MFCCs, to ensure 

organized data storage. 

4.2.2 Feature Extraction Loop 

Establish a systematic loop to traverse through each 

category of audio files and each individual audio 

file within those categories, demonstrating an 

efficient and structured approach to data 

processing.  Utilize the sophisticated capabilities 

of librosa to load each audio file and extract 
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pertinent features such as chroma_stft, 

spectral_centroid, spectral_bandwidth, 

spectral_rolloff, zero_crossing_rate, and MFCCs, 

showcasing comprehensive analysis of audio 

characteristics. Employ statistical techniques to 

compute the mean value of each feature set, 

encapsulating the essence of the audio segment and 

facilitating meaningful data representation. 

Construct a meticulously crafted string variable 

('to_append') encapsulating the extracted features 

along with the corresponding filename and category 

label, showcasing a meticulous approach to data 

organization and annotation.  

1. Chroma STFT:  
Chroma Short-Time Fourier Transform (STFT) is a 
technique that combines the traditional STFT with 
pitch class analysis to capture the harmonic and 
melodic content of audio signals. 

 
X(t,k) is the STFT of frame t and frequency bin  

x(n) is the input voice signal. 

w(n) is the window function. 

R is the hop size. 

N is the number of points in the FFT. 

j is the imaginary unit. 

p(k) = k mod12 

p(k) is the pitch class of frequency bin k. 

 

 
C(t, p) is the Chroma vector component for frame 𝑡 

and pitch class. P(p) is the set of frequency bins 

corresponding to pitch class 𝑝. 

2. Spectral Centroid:  
The spectral centroid is an amount used in signal 
processing and music analysis to indicate where the 
center of mass of the spectrum is located. It is often 
perceived as the "brightness" of a voice. 
Mathematically, it is defined as the weighted mean of 
the frequencies existed in the signal, with their 
magnitudes as weights. 

 
f(k) is the frequency at bin 𝑘. 

X(k) is the magnitude of the STFT at frequency bin 𝑘.                                    

3. Spectral Bandwidth 

Spectral bandwidth is an amount of the spread of  

frequencies in this way the spectral centroid. It 

presents an indication of the range of frequencies 

present in a signal and can be thought of as the 

"width" of the spectrum. 

 
f(k) is the frequency at bin 𝑘 

X(k) is the magnitude of the STFT at frequency bin 𝑘 

μ is the spectral centroid, which is calculated as 

 
4. Spectral Rolloff 

Spectral roll off is an amount used to define the shape 

of the spectrum of an audio signal. It indicates the 

frequency beneath which a specified percentage 

(generally 85% or 95%) of the whole spectral energy 

is present. This amount helps in distinguishing 

between harmonic and noisy sounds; harmonic sounds 

tend to have lower rolloff values, while noisy sounds 

have higher rolloff values. Calculate the Total Spectral 

Energy: Sum the magnitudes of all frequency bins. 

 
Determine the Threshold Energy: Calculate the 

specified percentage of the total spectral energy. 

For instance, for 85% rolloff, the threshold energy 
would be: 

 
5. Find the Roll-Off Frequency:  

Identify the frequency bin krolloff where the 

cumulative sum of magnitudes first exceeds the 

threshold energy. 

∑ ∣ 𝑋(𝑘) ∣
𝑘𝑟𝑜𝑙𝑙𝑜𝑓𝑓

𝑘=0

≥  ∑  
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 

The corresponding frequency 〖f(k〗_rolloff) is 

the spectral rolloff frequency. 

In summary, the spectral rolloff frequency 〖f(k〗
_rolloff) is defined as: 

𝑓𝑟𝑜𝑙𝑙𝑜𝑓𝑓 =  𝑓(𝑘𝑟𝑜𝑙𝑙𝑜𝑓𝑓) 
Such that  

∑ ∣ 𝑋(𝑘) ∣
𝑘𝑟𝑜𝑙𝑙𝑜𝑓𝑓

𝑘=0

≥  0.85  . ∑ ∣ 𝑋(𝑘) ∣ 
𝑘

 

6. Zero Crossing Rate:  
The Zero Crossing Rate (ZCR) is simple yet 
effective feature used in signal processing to 
characterize aspects of the waveform's shape. It 
measures the rate at which the signal diverse its 
hint, which corresponds to the number of times the 
waveform crosses the horizontal axis (zero 
amplitude). 
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N is the length of the signal (number of samples). 

x(n) denotes the amplitude of the signal at time 

index 𝑛 I(⋅) is the indicator function, which give 

outcome 1 if its argument is true and 0 otherwise. 

7. MFCC (Mel-Frequency Cepstral 

Coefficients):  

Mel-Frequency Cepstral Coefficients (MFCCs) are 

extensively used features in audio signal 

processing, especially in speech and music analysis. 

They are derived from the power spectrum of the 

sound signal but are processed to better represent 

how humans perceive sound. 

• Pre-emphasis: Optionally, the signal may 

undergo pre-emphasis to amplify higher 

frequencies that contribute more to the 

overall spectral shape. Where, α\alphaα is a 

pre-emphasis coefficient typically around 

0.97. 

x′(n)=x(n)−α⋅x(n−1) 

 

• Frame Blocking: The signal is splited into 

overlying frames of generally 20-30 ms, 

with a 50% overlap between consecutive 

frames. 

• Windowing: Each frame is multiplied by a 

window function (e.g., Hamming window) 

to cut down spectral leakage. 

x_w(n) = x′(n)−w(n) 

 

• Fast Fourier Transform (FFT): Compute 

the Discrete Fourier Transform (DFT) of 

each windowed frame to obtain  magnitude 

spectrum. 

X(k) = FFT(x_w(n)) 

 

• Mel Filterbank: Apply a Mel filterbank to 

the magnitude spectrum. The Mel scale is  

noncognitive scale of pitches that 

approximates the human auditory system's 

feedback more closely than linear frequency 

bands. where S_(m  ) is the power spectrum 

of the mmm-th Mel frequency band, 

∣〖X(k)∣〗^2  is the squared magnitude of the 

k-th FFT coefficient, and H_m (k) is the Mel 

filterbank weight for the m-th band at 

frequency bin k. 

𝑆𝑚  = ∑ ∣ X(k) ∣2⋅ 𝐻𝑚(k)𝑁−1
𝑘=0  

• Logarithm: Take the logarithm of the Mel 

filterbank energies to compress dynamic 

range and mimic human hearing sensitivity 

to loudness. 

Mm = log ( Sm ) 

 

• Discrete Cosine Transform (DCT): Apply 

the Discrete Cosine Transform to 

decorrelate the Mel frequency cepstral 

coefficients and extract the utmost 

informative features. where are the MFCCs, 

M is the number of Mel filters, and α(l) is a 

normalization factor. 

Cl  = ∑ α(l) .  Mm
M−1
m=0  

 

• MFCCs: The resulting coefficients Cl   

(typically 12-13 coefficients) serve as the 

short-term power spectrum of the sound in a 

compact form suitable for different voices 

processing tasks such as speech recognition, 

speaker identification, and music genre 

classification. 

4.3 Compose for CSV 

Execute a seamless procedure to write the 

meticulously extracted data from each audio file into 

the CSV file, ensuring meticulous data integrity and 

organization. Employ a systematic row-by-row 

approach to data storage, ensuring each row 

encapsulates a unique audio segment with its 

meticulously extracted features and corresponding 

label, facilitating streamlined data analysis and 

interpretation. 

5. Result And Discussion 

The "AI formed audio and Human Audio Detection" 

project has successfully developed a fully automated 

end-to-end solution to address the challenges posed by 

human and fake audio recordings. This innovative 

system represents a significant advancement in audio 

analysis, particularly in combating misinformation, 

identity theft, and privacy violations linked to AI 

formed audio content. Unlike traditional fake voice 

recognition systems that depend heavily on manual 

network parameter adjustments and expert experience, 

our solution offers a more efficient and automated 

approach. This significantly reduces potential human 

error and enhances overall accuracy. At the heart of our 

method is a meticulously designed Convolutional 

Neural Network (CNN) framework that leverages 
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speech waveforms and extracts relevant acoustic 

features as in every Mel-frequency cepstral coefficients 

(MFCCs). This method captures intricate prosodic 

differences between genuine and fake speech, enabling 

the model to make highly accurate classifications. By 

integrating feature selection and extraction techniques 

focused on MFCCs, we have improved the system's 

performance and adaptability, ensuring robust feature 

representation for effective audio analysis. 

Furthermore, the project incorporates a Support Vector 

Machine (SVM) module that complements the CNN 

model's capabilities by efficiently classifying audio 

samples as either AI formed audio or human voice. 

This integration of diverse machine learning 

techniques not only increases classification accuracy 

but also improves system's versatility in handling 

various types of audio content. The system's real-time 

detection and classification capabilities underscore its 

efficacy, demonstrating its ability to categorize audio 

samples into distinct classes based on learned patterns 

and features. User experience has been a paramount 

consideration, reflected in the development of an 

intuitive user interface. This interface facilitates 

seamless interaction, allowing users to input audio in 

various formats and providing real-time visualization 

of detection results. Additionally, the system offers 

customizable parameters, enabling users to tailor the 

analysis to their specific needs. The visualization and 

interpretation of detection outcomes are presented in a 

visually compelling manner, aiding users in 

understanding the system's decisions and enhancing the 

overall interpretability of detection results. Figure 4,5 

Shows the output. 

       

 
Figure 4 Output as Human Voice for Given Input 

 

 
Figure 5 Output as AI Generated Voice for Given 

Input 

Conclusion  
"AI formed audio and Human Audio Detection" 

represents a significant advancement in audio 

authentication. Utilizing cutting-edge CNN and SVM 

technologies, along with meticulous data 

preprocessing, the system effectively distinguishes 

genuine human speech from AI formed audio. The 

user-friendly interface ensures accessibility for all 

users, while the use of the Common Voice dataset and 

pyttsx3 library promotes inclusivity. Focusing on Mel-

Frequency Cepstral Coefficients (MFCCs) enhances 

model reliability. This comprehensive, end-to-end 

solution addresses the growing issue of counterfeit 

audio, reinforcing authenticity and trust in digital 

communications. 
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