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1. Introduction 

Anomaly detection in objects from remotely sensed 

images is a critical task in remote sensing, involving 

the identification of patterns that deviate from 

expected norms. This process is essential for 

applications ranging from environmental 

monitoring to military surveillance. Various 

methodologies have been developed to enhance the 

accuracy and efficiency of anomaly detection in 

remote sensing images. These methodologies 

leverage advanced machine learning models, 

feature extraction techniques, and computational 

strategies to address the challenges posed by noise, 

complex object shapes, and high-resolution data. 

Advanced Machine Learning Models like 

FlexVisionNet-YOLO utilizes a vision transformer 

architecture to capture global and local features, 

improving detection accuracy for radiation 

anomalies in optical remote sensing images. It 

incorporates multiscale feature fusion and adaptive 

optimization techniques to enhance performance 

metrics such as precision and recall. The JointNet is 

a multitask learning framework that integrates 

denoising and anomaly detection in hyperspectral 

images. It uses an autoencoder with the minimum 

noise fraction rotation to separate noise from 

anomaly targets, maintaining critical features for 

accurate detection. Feature Extraction Techniques 

like Feature-Associated CNNs employs object 

tokens and global information features to enhance 

feature representation and correlation in CNNs, 

improving object detection in remote sensing 

imagery. Also the Pixel Descriptors utilized in 

anomaly segmentation models to handle high-

resolution imagery, employing deep one-class 
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Anomaly detection in remotely sensed images is a critical task with diverse 

applications, ranging from environmental monitoring to smart agriculture. 

Various methodologies have been developed to enhance the detection of 

anomalies, which are deviations from expected patterns in image data. These 

methods leverage advanced computational techniques and machine learning 

models to improve accuracy and efficiency. Anomaly detection in remotely 

sensed images can be employed using different methods such as heterogeneous 

and edge computing, convolutional neural Networks, multi-dimensional feature 

space, unified anomaly detection, unsupervised learning for burnt area 

detection, etc. This paper discussed different methods and cutting-edge 

technologies for anomaly detection. While all these methods show significant 

advancements, challenges, limitations remain in terms of computational 

resource requirements and the need for real-time processing capabilities. 

Future research may focus on optimizing these models for broader applications 

and improving their adaptability to new data sources. 
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classification and multi-level feature extraction to 

improve segmentation accuracy. Computational 

Strategies such as Heterogeneous and Edge 

Computing strategy Implements parallel algorithms 

on multi-node platforms to accelerate anomaly 

detection in multispectral images, optimizing for 

energy efficiency and computational speed. While 

these methodologies significantly advance anomaly 

detection capabilities, challenges remain, such as 

handling diverse anomaly types and ensuring 

robustness across different datasets. Continuous 

research and development are necessary to address 

these challenges and further improve detection 

accuracy and efficiency. Anomaly detection in 

remotely sensed images is crucial for identifying 

irregularities caused by sensor malfunctions or data 

transmission errors, which can significantly impact 

image quality and analysis. This process involves 

categorizing various types of anomalies, such as 

CCD noise, stripe noise, and missing images, to 

enhance the reliability of remote sensing data. 

Advanced techniques, including deep learning 

architectures like FlexVisionNet-YOLO, leverage 

multiscale feature fusion and adaptive optimization 

to improve detection accuracy and classification 

performance, thereby facilitating more effective 

monitoring and analysis of environmental changes. 

The generalized block diagram for anomaly 

detection in remotely sensed images is shown in 

figure 1. Anomaly detection in remotely sensed 

images involves identifying pixels or regions that 

deviate significantly from the expected patterns of 

the background, often indicating the presence of 

unusual objects or phenomena. This process is 

particularly challenging in hyperspectral imaging 

due to the presence of noise, which can obscure 

anomalies. Effective methods, such as multitask 

learning frameworks, can enhance detection 

accuracy by simultaneously addressing denoising 

and anomaly identification, ensuring that critical 

features are preserved while minimizing the loss of 

anomaly targets during the analysis. The paper [41] 

addresses forcibly displaced populations (FDP) in 

settlement areas. Over 108.4 million forcibly 

displaced people exist globally. Earth observation 

technology aids humanitarian emergency 

assistance. Deep learning models enhance 

information retrieval for FDP settlements. The 

study focuses on unsupervised localization and 

counting of dwellings. Variational autoencoders 

(VAEs) are utilized for anomaly detection. The 

research aims to improve operational humanitarian 

response efficiency. Anomaly detection in remotely 

sensed images involves identifying patterns that 

deviate from expected behaviour, particularly in 

high-resolution multispectral images captured by 

unmanned aerial vehicles. This process is crucial 

for monitoring environmental integrity, as it can 

reveal human-made constructions that may impact 

fluvial ecosystems. Techniques such as the Reed–

Xiaoli (RX) method, combined with spatial 

information extraction through extinction profiles, 

enhance the detection of these anomalies. The 

integration of heterogeneous and edge computing 

further accelerates the analysis, enabling efficient 

processing of large datasets in real-time scenarios. 

An instance of anomaly detection from remotely 

sensed images is shown in figure 2.The paper [40] 

addresses earthquake-damaged building detection 

challenges. Quick detection is crucial for effective 

disaster management. Existing datasets for this task 

are limited or non-existent. The study introduces a 

new dataset from the 2023 Turkey-Syria 

earthquakes. The dataset includes over 4000 

building images and annotations. It combines SAR 

and optical imagery for analysis. The detection task 

is framed as binary image classification. Baseline 

methods and results are provided for comparison. 

 

 
Figure 1 Anomaly Detection General Block 

Diagram 

 

2. Literature Survey 

The paper [41] discusses deep learning's 

performance in classification and segmentation. It 

highlights limitations of supervised models in 

humanitarian response. The need for speed in 

information retrieval is emphasized. Generalization 

issues under distribution shift are identified. 

Previous studies on dwelling extraction from 

temporary settlements are referenced. The paper 
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[40] presents a novel dataset for earthquake-

damaged building detection. It addresses challenges 

in training data scarcity for robust algorithms. The 

dataset includes over 4000 building footprints and 

satellite images. It formulates damaged building 

detection as a binary classification problem. The 

study area is affected by the 2023 Turkey-Syria 

earthquakes. The dataset aims to expedite algorithm 

development for future events. The review [39] 

focuses on marine environmental threat detection 

methods. It evaluates direct and anomaly detection 

methods. Five major families of methods are 

identified. Index computation methods utilize 

spectral signatures for material identification. 

Statistics and machine learning methods include 

various classical techniques. Supervised deep 

learning methods detect specific events. Self-

supervised deep learning methods identify anomaly 

events. Image reconstruction deep learning methods 

measure reconstruction error for anomaly detection. 

The literature review [38] focuses on Earth's surface 

anomaly detection. It includes related works on 

remote sensing (RS) and GNN. The integration of 

GNN in RS is discussed. The study [35] builds on 

previous research using MERSI-II data. It explores 

lead detection using brightness temperature images. 

Previous studies utilized SAR for distinguishing 

leads from thick ice. The impact of wind on 

backscatter coefficients is acknowledged. 

Comparisons are made with MODIS data for 

validation. The paper [34] proposes a new spectral 

anomaly detection method. It operates under sparse 

representation and low-rank framework. The 

method distinguishes anomalies on the sea surface. 

A spectral dictionary for normal scenes is 

formulated. The ADMM method optimizes the 

spectral dictionary. The method detects anomalies 

using an error matrix. It shows generality for 

various sea surface anomalies. Experimental results 

demonstrate superior performance on HY-1C 

datasets.The researcher [32] discussed Precision 

agriculture which uses IoT devices for 

environmental data collection.  Multidevice 

systems monitor vegetation and improve crop 

growth. Data heterogeneity poses challenges in 

sensor integration. Various solutions exist for data 

interface and integration. Quantum-inspired 

algorithms improve energy consumption in sensor 

networks. Ontologies support data integration and 

contextualization in agriculture. CANDELA 

project bridges big data and earth observation data. 

Anomaly detection systems classify agricultural 

areas based on anomalies. The paper [30] reviews 

traditional and deep learning HAD methods. It 

summarizes various machine learning techniques 

for HAD. Deep learning models show significant 

progress in HAD tasks. The review highlights 

unsupervised and GAN-based approaches for HAD. 

It contrasts existing HAD surveys with this 

comprehensive review. Figure 2 shows Remotely 

Sensed Images and Corresponding Anomaly 

Detected. [1-10] 

 
Figure 2 Remotely Sensed Images and 

Corresponding Anomaly Detected 

 

The research [29] discusses various anomaly 

detection approaches. Anomalies are defined as 

significant deviations in data. Civilian applications 

of anomaly detection are highlighted. Related 

works include mineral exploration and ecosystem 

disturbances. The paper [28] focuses on geothermal 

anomaly detection methods. Multitemporal Landsat 

8 images are utilized for analysis. Emphasizes the 

significance of NNE-trending faults in geothermal 

research. Discusses the impact of impervious 

surfaces, water, and vegetation. Highlights the need 

for multitemporal TIR remote sensing data. One 

researcher [25] focused on Anomaly Detection 

methods. AD methods are categorized by learning 

techniques and algorithms. Supervised, semi 

supervised, and unsupervised learning are common 

in AD. Novelty detection learns normality to 

identify unobserved events. Outlier detection 
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identifies inconsistent data points in training sets. 

Subtle data deviations may not indicate crop 

anomalies. Established AD techniques include 

autoencoders and one-class SVM.  HMMs have 

been applied to solve AD problems in literature.  

The paper [24] addresses airport detection in large 

areas. Previous frameworks struggled with small 

airport detection. Airports significantly impact 

transportation and economy. Limited studies exist 

on large-area airport detection. The researcher [22] 

worked on Background dictionary construction 

which affects target detection performance. 

Unsupervised clustering methods are commonly 

used for background dictionary construction. K-

means clustering is simple but sensitive to 

anomalies. Density peak clustering extracts pure 

background and anomalous pixels. Generative 

adversarial networks are examined for 

hyperspectral anomaly detection. Proposed SSBD 

method integrates SAD and sparse representations 

theories. Numerous ship detection algorithms have 

emerged recently. Traditional methods use low-

level hand-crafted features. Deep learning methods 

include anchor-based and anchor-free algorithms. 

Deep learning requires large labelled samples for 

training. Convolutional neural networks are applied 

for feature extraction. Traditional algorithms 

struggle in complex scenes like cloud interference. 

Real-time processing faces challenges due to 

hardware limitations [21]. Literature review [20] 

categorizes works into top-down and bottom-up 

approaches. Top-down works build large datasets 

with many object classes. Bottom-up works focus 

on specific problems with few object classes. The 

paper targets detection of airports and electrical 

substations. It summarizes current datasets and 

deep learning approaches. The paper [17] discusses 

2-D approaches for remote sensing data. It 

references 3-D convolution operations in literature. 

Previous studies focused on pixel-based and spatial 

correlation methods. The model is compared to 

unidimensional AR models. Literature supports the 

need for robust parameter estimation methods.The 

paper [15] reviews Cook's distance in multivariate 

statistics. It discusses influential points and 

leveraging in statistics. The literature includes 

methods for detecting anomalous changes. It 

highlights challenges in remote sensing image 

analysis. The paper mentions existing approaches 

and their computational burdens. The paper [10] 

focuses on iceberg detection using SAR images. 

Previous work addressed large iceberg detection 

and tracking. Small iceberg identification remains 

challenging in sea ice. The proposed detector uses 

dual-polarization SAR images. It improves contrast 

between icebergs and sea ice clutter. The 

methodology enhances detection probability 

significantly. The researcher [9] discusses anomaly 

detection in hyperspectral imagery. It highlights the 

need for unsupervised detection methods. 

Progressive band processing allows real-time 

anomaly detection. RX detector is a widely used 

anomaly detection algorithm. Causal RXD is a 

notable variant of RX detector. The Local detection 

algorithms calculate new correlation matrices for 

each pixel. Significant pixels need replacement to 

reduce computation time. Streaming background 

statistics (SBS) simplifies local background 

statistics calculation. SBS matrix updates require 

adding and removing pixels efficiently. Inverse 

matrix real-time updates are performed using 

Sherman-Morrison formula [8]. The paper [5] 

focuses on anomaly detection in hyperspectral 

images. A likelihood ratio test-based decision rule 

is proposed. Automated data-driven estimation of 

background PDF is emphasized. Both 

semiparametric and nonparametric models are 

investigated. Challenges in learning model 

parameters without operator intervention are noted. 

Experimental evaluation uses two real 

hyperspectral images. [11-20] 

3. Challenges Observed in The Research 

Confusion between dwellings and non-dwelling 

instances across datasets. False positive localization 

of non-anomalous targets observed. Inherent 

complexity of dwelling structures affects model 

performance [41]. Limited availability of VHR 

SAR images in disaster areas. Absence of labels for 

damaged buildings. Lack of accurate terrain models 

for alignment [40]. Detectability and 

responsiveness for effective environmental 

monitoring. Adaptability to various types of threats 

without limitations. Resource efficiency for 

deployment on different hardware configurations. 

Limited accessible satellite datasets and labels [39]. 

Absence of prior knowledge hinders anomaly 

detection accuracy. Anomalous targets and 

backgrounds are reconstructed simultaneously. 

Local feature loss during background 

reconstruction is a concern. High data dimensions 
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increase computational costs significantly. 

Difficulty in creating a background dictionary 

without anomalous interference [38]. Sudden-onset 

anomalies threaten human life and property 

security. Lack of public datasets for anomaly 

detection. Response time delay in data collection 

and pre-processing. Limited node information in 

GNN methods [37]. Real HSIs often do not follow 

Gaussian distribution. Anomalies and noise 

interfere with statistics estimation.  Establishing a 

unified statistical model is difficult. Nonlinear 

characteristics limit performance of representation-

based methods [36]. Misclassification of bright-

dark lead in visual interpretation. Difficulty in 

obtaining accurate small-scale wind data. Low 

accuracy in thin ice identification due to rapid 

changes. Incompatibility due to satellite acquisition 

time differences. Cloud cover affecting judgment 

on open water and thin ice [35]. The need for 

accurate spectral dictionary representation. 

Balancing low-rank and sparsity constraints in 

optimization. Variability in anomaly types on sea 

surface [34]. Optimal filtering through a single FO 

is non-robust. Intratextural variation must be 

considered for accurate processing. Conventional 

methods involve high iterative complexities. 

Noniterative and optimization-free procedures are 

needed to reduce complexity. Environmental 

artifacts affect image quality and require 

suppression [33]. Limited use of spatial information 

in anomaly detection. Anomaly pollution problem 

affecting detection accuracy [31]. Spectrum 

complexity due to illumination and environmental 

changes. Strong correlation and redundancy 

between adjacent spectral bands. Limited spatial 

resolution leading to mixed pixel issues [30]. 

Anomaly detection faces high-dimensional data 

challenges. Aleatoric uncertainty complicates data 

distribution analysis. Class overlap and label noise 

affect data quality. Curse of dimensionality impacts 

anomaly detection effectiveness [29]. Extracting 

geothermal anomalies is affected by external 

interference factors. Daytime data cannot 

accurately show geothermal distribution. Terrain 

negatively impacts geothermal anomaly extraction 

results [28]. Seasonal influences affect inversion 

results in geothermal exploration. Single-temporal 

data leads to flawed geothermal exploration 

outcomes. Pseudo-anomalous areas are easily 

extracted during detection. Complicated terrain 

increases entropy values, causing outliers. 

Difficulty in identifying debris in rocky coastlines. 

Ocean debris is widely scattered and hard to 

capture. Ground truth data may be inaccurate or 

underestimated. Class imbalance problem in debris 

classification. Background deviations introduce 

errors in image analysis [27]. Defective pixels may 

arise between calibration steps. Subtle signal values 

complicate defect detection. [21-30] 

 
Table 1 Challenges in Anomaly Detection 

Challenges Description 

Data Volume 

The extensive volumes of 
remote sensing data 
necessitate the 
implementation of effective 
processing and analytical 
methodologies to promptly 
detect anomalies. 

Noise and 
Interference 

Remotely acquired imagery 
may be influenced by 
atmospheric variables, sensor-
induced artifacts, and 
additional sources of noise, 
which can mask or warp 
anomalies. 

Dependency on 
Context 

Anomalies may exhibit 
significant dependence on 
context, necessitating a 
comprehensive 
comprehension of the 
foundational environment and 
its anticipated behavioral 
patterns. 

Interpretability 

Effective methodologies for 
anomaly detection must yield 
results that are interpretable, 
thereby facilitating 
subsequent inquiries and 
informed decision-making. 

 

Residual nonuniformity noise affects image quality. 

Banding effect identified but not addressed in this 

work [26]. Difficulty in obtaining labelled training 

instances for anomalies. Subtle deviations may 

result from external factors, not anomalies. 

Variance changes can affect anomaly detection 

performance [25].  Airports are difficult to detect in 

vast areas. Complex geographical backgrounds 

hinder accurate airport detection. Existing airport 

databases have incomplete data and spatial 

inaccuracies. Single model mining struggles with 

complex remote sensing images [24]. Anomalies in 

InSAR data are poorly estimated. Low absolute 
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numbers of labelled deformation instances. High-

dimensional, noisy, and imbalanced data 

challenges.   Overlapping sequences complicate 

anomaly detection. Requires unsupervised learning 

due to limited labelled data [23]. Limited supply of 

infrared data for ship detection. Imprecise sea-land 

segmentation under conditions. Low contrast 

between target and background. Cloud interference 

affecting detection accuracy. New artificial 

buildings complicating segmentation. Insufficient 

unbalanced data for improved detection 

performance [21]. Following table 1 shows 

challenges in anomaly detection in remote sensing. 

4. Limitations Observed in The Previous 

Research 

Supervised models require extensive annotated data 

for training. Models struggle with generalization 

across different geographies and times. Classical 

VAE poorly localizes dwelling objects in anomaly 

score maps. VAE fails to learn good latent code 

from diverse datasets [41]. Limited availability of 

VHR SAR images in disaster areas. Absence of 

labels for damaged buildings. Lack of accurate 

terrain models for alignment. Dataset constrained 

by limited quantity and imbalance [40]. Limited 

datasets for Phsat-2 and IMAGIN-e missions. Small 

size of anomalies affects detection accuracy.  

Custom dataset may introduce selection bias. 

Detection thresholds can impact performance. 

Latency in image processing affects 

responsiveness. Algorithms need to be lightweight 

for embedded hardware [39]. Missing local features 

in background reconstruction. Overcoming 

limitations of ViT in learning local structures. 

Excessively high masking rate restricts feature 

learning. Low masking rate leads to overfitting and 

noise neglect [38]. Lack of a public dataset for 

anomaly detection. Limited solutions for rapid 

anomaly detection. Need for more comprehensive 

anomaly types in future research [37]. Real HSIs 

often do not follow Gaussian distribution. 

Anomalies and noise interfere with statistics 

estimation. Unified statistical model is difficult for 

many real HSIs. Nonlinear characteristics limit 

performance of linear modelling methods [36]. 

Wind data at small scale is difficult to obtain 

accurately. Misclassification of bright-dark leads 

affects detection accuracy. Low accuracy in thin ice 

identification due to rapid changes [35]. Optimal 

filtering through a single FO is non-robust. Iterative 

methods exhibit high computational complexity. 

Lack of texture-dependent processing in 

conventional methods. Existing methods do not 

adaptively evaluate FOs [33]. Limited use of spatial 

information in existing detectors. Anomaly 

pollution problem affects detection accuracy [31]. 

Spectrum complexity due to various environmental 

factors. Strong correlation between adjacent bands 

causes redundancy. Limited spatial resolution leads 

to mixed pixels. Low detection rates and high false 

alarms from mixed pixels [30]. Performance is 

limited without pre-event images. Radiation 

differences affect detection accuracy. Recent pre-

event images are necessary for effective analysis 

[29]. Extracting geothermal anomalies is influenced 

by external factors. Daytime data cannot accurately 

show geothermal distribution. Terrain negatively 

impacts temperature inversion results. Single-

temporal data is flawed for geothermal exploration. 

Inaccurate gradient due to insufficient inversion 

data. Visual interpretation needed after NDBI 

extraction for buildings [28]. 

5. Future Research 

The future scope of anomaly detection in remotely 

sensed images is promising, driven by 

advancements in deep learning, heterogeneous 

computing, and novel algorithmic approaches. 

These technologies are enhancing the precision, 

efficiency, and applicability of anomaly detection 

across various remote sensing contexts. The 

integration of these methods is expected to address 

current challenges and expand the capabilities of 

remote sensing applications. The use of deep 

learning models like FlexVisionNet-YOLO, which 

incorporates a vision transformer architecture, 

significantly improves the detection of radiation 

anomalies in optical remote sensing images. This 

model enhances precision, recall, and classification 

accuracy by employing multiscale feature fusion 

and adaptive optimization techniques. The 

application of heterogeneous computing and edge 

computing accelerates anomaly detection in 

multispectral images. This approach utilizes multi-

core CPUs and GPUs to efficiently process high-

resolution data, enabling real-time anomaly 

detection in remote environments. The following 

table 2 shows the applications in anomaly detection 

in remotely sensed images and their corresponding 

case studies. Tree topology-based anomaly 

detection (TTAD) for hyperspectral images offers a 
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novel approach by leveraging the sparse 

distribution of anomalies. This method improves 

the separability of anomalies from background data, 

enhancing detection precision without relying on 

traditional model assumptions. Unsupervised 

learning methods, such as Vector Quantized 

Variational Autoencoder (VQ-VAE), are being 

explored for burnt area extraction in satellite 

images. These methods show potential for scalable 

and effective anomaly detection in emergency risk 

monitoring scenarios. Future frame prediction 

networks, based on convolutional variational 

autoencoder networks, are being developed for 

detecting anomalies in aerial videos. These 

networks offer superior performance in identifying 

suspicious events, highlighting their potential in 

surveillance applications. While these 

advancements are promising, challenges such as 

data heterogeneity, computational demands, and the 

need for real-time processing remain. Addressing 

these issues will be crucial for the broader adoption 

and effectiveness of anomaly detection in remote 

sensing. [31-41] 

Table 2 Applications and Case Studies 
Applications Case Studies 

Environmental 
Monitoring 

Detect changes in land cover, 
deforestation, or pollution 
levels 

Urban Planning 
Identify unauthorized 
construction, infrastructure 
issues, or traffic anomalies 

Disaster 
Response 

Quickly identify and locate 
areas affected by natural 
disasters 

Security and 
Surveillance 

Detect unusual activities or 
potential threats in critical 
infrastructure 

 

Conclusion 

The literature survey on anomaly detection in 

remotely sensed images highlights the diverse 

methodologies and applications in this field. 

Anomaly detection is crucial for identifying 

unusual patterns in data, which is particularly 

challenging in remote sensing due to the complexity 

and volume of data. Techniques such as machine 

learning, hyperspectral analysis, and change 

detection are commonly employed to address these 

challenges. These methods are applied across 

various domains, including environmental 

monitoring, urban planning, and disaster 

management, showcasing their versatility and 

importance in real-world applications. Machine 

learning (ML) techniques, including supervised, 

unsupervised, and semi-supervised learning, are 

extensively used for anomaly detection in wireless 

sensor networks (WSNs) and remote sensing data. 

These techniques help in identifying unusual 

patterns and diagnosing anomalies in noisy and 

unreliable data. Deep learning advancements have 

significantly improved the performance of change 

detection tasks in satellite imagery, offering robust 

solutions for urban growth monitoring and climate 

change studies. Hyperspectral sensors capture data 

in numerous spectral bands, enabling detailed 

anomaly detection without prior knowledge of the 

scene. These unsupervised learning techniques are 

effective in discovering rare features in 

hyperspectral images. The mathematical 

framework for anomaly detection in hyperspectral 

images includes structured and unstructured 

background models, which are crucial for accurate 

detection statistics. Change detection 

methodologies, such as supervised and 

unsupervised approaches, are vital for monitoring 

environmental changes and urban development. 

These methods are tailored to handle multi-source 

and multi-objective scenarios in remote sensing. 

The integration of diverse data sources and the 

development of a comprehensive change detection 

pipeline are essential for effective analysis and 

application in various domains. While the survey 

highlights the effectiveness of these techniques, it 

also points out the challenges, such as 

computational complexity and the need for more 

robust algorithms to handle diverse data sources. 

Future research directions include improving data 

fusion techniques and developing more efficient 

algorithms for real-time anomaly detection in 

remote sensing applications. 
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