
RESEARCH ARTICLE 
 

 
RSP Science Hub 

International Research Journal on Advanced Science Hub 
2582-4376 

www.rspsciencehub.com 
       Vol. 07, Issue 01 January 

 
 

http://dx.doi.org/10.47392/IRJASH.2025.007 

 

    

 OPEN ACCESS 51 

 

Implement I2C Protocol for Secure Data Transfer Using Verilog 
B. Ravi kumar1, Kunta Nikhitha2, Punnami Manogna3, Begampeta Nanda kishore4 
1Associate professor, Dept. of ECE, Institute of Aeronautical Engineering, Hyderabad, Telangana, India. 
2,3,4B Tech student, Dept. of ECE, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.  

Emails: b.ravikumar@iare.ac.in1, nikithakunta16@gmail.com2, manognapunnami@gmail.com3, 

nandakishor8284@gmail.com4 

 

1. Introduction 
The I2C (Inter-Integrated Circuit) protocol is a 

communication standard that is commonly used in 

embedded systems. This protocol allows various 

devices, such as sensors, microcontrollers, and 
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Digital The I2C (Inter-Integrated Circuit) protocol is widely used in embedded 

systems for enabling communication between various devices such as sensors, 

microcontrollers, and other peripherals. However, early implementations of 

the I2C protocol focused primarily on data transfer efficiency rather than 

security This project aims to implement a secure data transfer mechanism for 

the I2C protocol using Verilog, a hardware description language widely used 

for designing and modelling electronic systems. Our implementation enhances 

the traditional I2C protocol by integrating security features that protect data 

from unauthorized access during transmission. By using encryption and 

authentication techniques, the project ensures that data integrity and 

confidentiality are maintained throughout the communication process. The 

Xilinx Vivado Design Suite is utilized for the synthesis, simulation, and testing 

of the secure I2C protocol. Xilinx software provides a robust environment for 

designing hardware-based systems, offering features such as timing analysis, 

design optimization, and resource management. The secure I2C protocol was 

implemented and simulated using Verilog code within this software, enabling 

thorough testing and debugging prior to hardware deployment. The hardware 

component of the project is based on the Zybo Z7 development board. The Zybo 

Z7 kit provides an ideal platform for prototyping and testing the secure I2C 

protocol, as it allows for real-time interaction between the FPGA and 

peripheral devices connected through I2C communication. By running the 

implemented design on this hardware, we were able to evaluate the real-world 

performance and security of the system. The results demonstrate that the secure 

I2C protocol operates efficiently on the Zybo Z7 kit, with minimal impact on 

system performance. The integration of security features did not introduce 

significant latency or resource overhead, indicating that secure communication 

can be achieved without compromising speed or functionality. This successful 

implementation highlights the feasibility of deploying secure I2C protocols in 

hardware systems where data protection is a priority. 

mailto:b.ravikumar@iare.ac.in
mailto:nikithakunta16@gmail.com
mailto:manognapunnami@gmail.com
mailto:nandakishor8284@gmail.com


Implement I2C Protocol for Secure Data                                                                                     2025, Vol. 07, Issue 01 January 

   

International Research Journal on Advanced Science Hub (IRJASH) 52 

 

peripherals, to communicate with one another 

efficiently. Its popularity stems from its simplicity 

and effectiveness in connecting multiple devices 

using only two wires: a data line (SDA) and a clock 

line (SCL). In many applications, especially in 

consumer electronics and automation, I2C is 

favored because it enables multiple devices to share 

the same communication bus. Each device on the 

I2C bus has a unique address, allowing the master 

device to send data to specific slaves without 

interference. This makes it a flexible solution for a 

wide range of applications, including smart home 

devices, medical equipment, and industrial control 

systems. However, while the I2C protocol excels in 

efficiency, earlier implementations did not 

prioritize security. Many systems were designed 

with a focus on speed and reliability, which often 

meant overlooking the vulnerabilities that could 

arise during data transmission. As a consequence, 

these systems became susceptible to risks such as 

data interception, manipulation, and unauthorized 

access. This lack of security can lead to significant 

problems, especially in applications that handle 

sensitive information or critical operations. For 

example, in healthcare applications, unauthorized 

access to medical devices could compromise patient 

safety and privacy. Similarly, in industrial control 

systems, manipulated data could result in faulty 

operations, leading to safety hazards or financial 

losses. Therefore, it is increasingly important to 

address these vulnerabilities in modern I2C 

implementations. To enhance the security of the 

I2C protocol, various measures can be integrated. 

One approach is to implement encryption 

techniques, which convert data into a secure format 

that is unreadable to unauthorized users. By 

encrypting the data being transmitted over the I2C 

bus, even if an attacker intercepts the 

communication, they would not be able to decipher 

the information without the proper decryption key. 

Another important aspect of securing the I2C 

protocol is authentication. This process ensures that 

both the master and slave devices are legitimate and 

authorized to communicate with each other. By 

implementing robust authentication mechanisms, 

such as digital signatures or challenge-response 

protocols, devices can verify each other's identities 

before exchanging sensitive information. 

Furthermore, maintaining data integrity is crucial in 

secure I2C communication. This means ensuring 

that the data sent from one device to another 

remains unchanged during transmission. 

Techniques such as checksums or cryptographic 

hashes can be employed to verify the integrity of the 

data, alerting the devices if any alterations occur 

during the transfer. As embedded systems become 

more interconnected, the need for secure 

communication protocols like I2C is more pressing 

than ever. By integrating security features into the 

I2C protocol, developers can create systems that not 

only perform efficiently but also protect against 

potential threats. This dual focus on performance 

and security is essential for building trust in the 

technology that powers modern applications. In 

summary, while the I2C protocol remains a 

fundamental communication standard in embedded 

systems, its early implementations must evolve to 

address security vulnerabilities. By incorporating 

encryption, authentication, and data integrity 

measures, it is possible to create a secure 

environment for data transfer. As the demand for 

secure communication continues to grow, 

enhancing the I2C protocol is a necessary step 

towards ensuring the safety and reliability of 

embedded systems in various applications. 

Embedded systems are specialized computing 

systems designed to perform dedicated functions 

within larger systems. They are ubiquitous in 

everyday devices, from household appliances to 

automotive systems and industrial machinery. 

Given their integration into critical operations, the 

security of these systems is paramount. The 

interconnected nature of embedded systems also 

means that a vulnerability in one device can 

compromise the entire network, making it crucial to 

implement robust security measures. As technology 

advances, so do the tactics of malicious actors. 

Cybersecurity threats have become more 

sophisticated, with attackers exploiting 

vulnerabilities in various protocols, including I2C. 

For example, an attacker might employ techniques 

like sniffing, where they intercept data on the 

communication bus to gain unauthorized access to 

sensitive information. Similarly, spoofing attacks 

can allow unauthorized devices to impersonate 

legitimate devices on the I2C bus, leading to data 

manipulation or unauthorized control. Regular 

Updates and Patching: Continuous monitoring for 

vulnerabilities and applying updates to both 

firmware and software can help protect against 
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newly discovered threats. As technology advances, 

so do the tactics of malicious actors. Cybersecurity 

threats have become more sophisticated, with 

attackers exploiting vulnerabilities in various 

protocols, including I2C. For example, an attacker 

might employ techniques like sniffing, where they 

intercept data on the communication bus to gain 

unauthorized access to sensitive information. 

Similarly, spoofing attacks can allow unauthorized 

devices to impersonate legitimate devices on the 

I2C bus, leading to data manipulation or 

unauthorized control. Many industries have specific 

standards and regulations that dictate the level of 

security required for embedded systems. For 

example, the Medical Device Regulation (MDR) in 

healthcare requires that medical devices meet 

stringent security standards to protect patient data. 

Compliance with these regulations often drives the 

adoption of secure communication protocols like 

I2C, ensuring that devices can be trusted in their 

operations. The trend toward the Internet of Things 

(IoT) is pushing the need for secure I2C 

implementations. As more devices become 

interconnected, the amount of data transmitted 

increases, amplifying the potential attack surface. 

Future I2C implementations will likely need to 

support advanced security protocols, such as 

Transport Layer Security (TLS), to safeguard 

communications effectively. The integration of 

security features into the I2C protocol is not just an 

enhancement but a necessity in today’s technology 

landscape. By addressing vulnerabilities through 

encryption, authentication, and robust data integrity 

measures, developers can create secure embedded 

systems. This evolution is critical for maintaining 

trust in technology and ensuring that devices can 

operate safely in an increasingly connected world. 

As we continue to innovate, prioritizing security 

will be essential for the future of embedded systems 

and communication protocols. Security in 

embedded systems goes beyond just protecting 

data; it also involves ensuring the overall integrity 

and functionality of the system. A breach in security 

can lead not only to data loss but also to catastrophic 

failures in critical applications, such as those found 

in healthcare or automotive industries. For instance, 

unauthorized access to a medical device can disrupt 

treatment or even endanger a patient’s life. 

Similarly, in automotive systems, an attacker 

gaining control over vehicle operations could pose 

severe risks to driver and passenger safety. A 

comprehensive approach to security involves threat 

modeling, which helps identify potential 

vulnerabilities and the impacts of various threats. 

When analyzing the I2C protocol, it’s essential to 

consider: Physical Attacks: Since I2C is often used 

in embedded systems where physical access is 

possible, attackers can tap into the communication 

lines to intercept or manipulate data. Replay 

Attacks: An attacker might capture valid 

communication between devices and replay it later 

to gain unauthorized access or cause incorrect 

actions. Denial of Service (DoS): An attacker may 

flood the bus with requests, preventing legitimate 

devices from communicating effectively. Man-in-

the Middle Attacks: This occurs when an attacker 

secretly intercepts and relays messages between 

two devices, potentially altering the 

communication. [1-5] 

2. Existing Method 

The Xilinx Vivado Design Suite is a powerful tool 

utilized for the synthesis, simulation, and testing of 

the secure I2C protocol. This software environment 

is designed specifically for hardwarebased systems, 

making it ideal for developing complex applications 

like secure communication protocols. One of the 

primary advantages of using Vivado is its 

comprehensive feature set, which includes timing 

analysis, design optimization, and resource 

management. These features are crucial for 

ensuring that the I2C protocol operates efficiently 

while meeting specific performance criteria. In this 

project, the secure I2C protocol was implemented 

using Verilog, a widely used hardware description 

language that allows for precise modeling of digital 

systems. By coding the protocol in Verilog, we 

could leverage the simulation capabilities of the 

Vivado suite to thoroughly test and debug the 

design before deploying it to hardware. This 

iterative testing process is essential for identifying 

potential issues early, minimizing the risk of errors 

during actual operation. The hardware component 

of the project is centered around the Zybo Z7 

development board, which is built on the Xilinx 

Zynq-7000 FPGA platform. This board integrates 

an ARM Cortex-A9 processor with an FPGA, 

providing a flexible environment for both software 

and hardware development. The combination of 

these two components allows for real-time 

interaction between the FPGA and peripheral 
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devices connected through I2C communication. 

Using the Zybo Z7 kit for prototyping the secure 

I2C protocol offers several advantages. The board’s 

architecture supports various I2C devices, making 

it easy to test the protocol with multiple peripherals. 

This real-time interaction enables developers to 

assess the protocol's performance under different 

conditions, allowing for optimization based on 

actual operational data. The ability to run the 

implemented design on the Zybo Z7 also facilitates 

the evaluation of the system's security features. By 

observing how the protocol performs during live 

data transfer, we can ensure that encryption and 

authentication measures function as intended. This 

is particularly important in security- critical 

applications, where any vulnerability could lead to 

data breaches or unauthorized access. The Vivado 

Design Suite further enhances the development 

process by providing tools for performance analysis 

and debugging. These tools allow engineers to 

visualize data flows, monitor signal integrity, and 

adjust parameters to optimize the design. As a 

result, the development of the secure I2C protocol 

is streamlined, leading to a more robust and reliable 

implementation. Once the design is thoroughly 

tested and verified in the Vivado environment, it 

can be deployed to the Zybo Z7 board for final 

evaluation. This seamless transition from 

simulation to hardware testing is a significant 

advantage of using the Vivado suite, as it reduces 

the overall development time and increases 

confidence in the final product. Utilizing a 

hierarchical design approach in Vivado allows for 

modular development. This method breaks down 

the secure I2C protocol into smaller, manageable 

components, such as the master controller, slave 

interface, and security modules. Each module can 

be developed and tested independently before 

integration, which simplifies debugging and 

enhances maintainability In designs involving 

multiple clock domains, managing clock domain 

crossings is critical. Vivado provides tools for 

analyzing and mitigating issues related to 

metastability. Implementing proper 

synchronization techniques ensures reliable 

communication between the I2C master and slaves 

operating on different clock frequencies. Before 

deploying the secure I2C protocol on hardware, 

extensive simulation is conducted using Vivado’s 

simulation environment. This includes testing 

various scenarios such as normal operation, edge 

cases, and error conditions. By simulating both the 

data flow and security mechanisms, developers can 

validate that encryption and authentication 

processes work correctly under different conditions. 

Vivado supports a variety of intellectual property 

(IP) cores that can accelerate development. For 

instance, integrating predesigned IP cores for I2C 

communication can simplify implementation. 

Additionally, security IP cores, such as those for 

encryption and decryption, can be leveraged to 

enhance the protocol without requiring extensive 

custom coding. Timing analysis is crucial for 

ensuring that the secure I2C protocol meets the 

required speed specifications. Vivado allows users 

to set timing constraints and perform static timing 

analysis to identify potential issues. Ensuring that 

all signals meet their timing requirements is 

essential for reliable communication The Integrated 

Logic Analyzer (ILA) in Vivado provides realtime 

debugging capabilities. By embedding the ILA into 

the design, developers can monitor internal signals 

and data transactions during operation. This tool is 

invaluable for troubleshooting and verifying that 

the secure I2C protocol behaves as expected in real-

time scenarios. Using Vivado's optimization tools, 

developers can analyze resource utilization for the 

secure I2C design. Techniques such as pipelining, 

resource sharing, and retiming can be applied to 

maximize efficiency. This is especially important 

on resourceconstrained platforms like the Zybo Z7. 

In addition to hardware development, integrating 

firmware that manages the secure I2C 

communication is essential. Using software 

development environments compatible with the 

ARM Cortex-A9 processor on the Zybo Z7, 

developers can implement the logic for handling 

encryption keys, managing device addresses, and 

processing incoming and outgoing data securely. 

To ensure robustness, the secure I2C protocol is 

tested under various environmental conditions, such 

as different temperatures and voltage levels. This 

testing helps identify how the protocol performs in 

real-world scenarios and whether security measures 

hold up under different operational stresses 

Finally, incorporating a feedback loop into the 

development process allows for continuous 

improvement of the secure I2C protocol. Gathering 

data from testing phases and user feedback can 

guide subsequent iterations of the design, helping to 
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refine security features and enhance performance 

over time. These existing methods highlight a 

comprehensive approach to developing a secure 

I2C protocol using the Xilinx Vivado Design Suite 

and Zybo Z7 development board. By employing 

these strategies, developers can create a robust, 

efficient, and secure communication system 

tailored to meet the demands of modern embedded 

applications. [6-10] 

3. Proposed Design 

The proposed design aims to implement a secure 

I2C (InterIntegrated Circuit) protocol that enhances 

data integrity and confidentiality while maintaining 

efficient communication between embedded 

devices. This design leverages the Xilinx Vivado 

Design Suite for synthesis, simulation, and testing, 

using the Zybo Z7 development board as the 

hardware platform. The secure I2C protocol will be 

structured into several key components: 

3.1. Master Controller 

The master device initiates communication with 

slave devices. It includes logic for generating start 

and stop conditions, sending data, and managing 

acknowledgment signals. Slave Interface: Each 

slave device will have an interface that responds to 

the master’s requests. It will interpret commands 

and send data back securely. Security Module: This 

module will integrate encryption and authentication 

functionalities. It will be responsible for securing 

data before transmission and verifying the identity 

of communicating devices. Error Detection Unit: 

To maintain data integrity, this unit will implement 

error detection mechanisms, such as CRC (Cyclic 

Redundancy Check), to identify any corruption in 

transmitted data. Timing Control: A timing control 

unit will manage the timing of data transfers to 

ensure adherence to I2C specifications. 

Initialization: Upon power-up, the master controller 

initializes the I2C bus and configures the security 

module. It will load encryption keys and set the 

appropriate communication parameters. 

3.2. Master-Slave Communication 

Start Condition: The master generates a start 

condition to signal the beginning of a 

communication session. Addressing: The master 

sends the address of the target slave device. The 

security module encrypts this address to protect 

against interception. Data Transmission: Data is 

sent from the master to the slave, with the security 

module encrypting the data before transmission.  

3.3. Acknowledgment 
The slave sends an acknowledgment signal back to 

the master, indicating successful receipt of the data. 

Slave Response: If the master requests data from the 

slave. The slave retrieves the requested data and 

encrypts it using the security module.The encrypted 

data is sent back to the master, which decrypts it for 

use.Error Handling: The error detection unit 

continuously monitors the data being transmitted. If 

an error is detected, the unit generates a signal to 

initiate a retransmission or notify the master. 

Termination: The master sends a stop condition to 

end the communication session. The timing control 

unit ensures that all signals are maintained for the 

required duration before releasing the bus. The 

design will be implemented on the Zybo Z7 

development board, which features an ARM 

Cortex-A9 processor and a Xilinx Zynq-7000 

FPGA. The FPGA will handle the secure I2C 

protocol's hardware logic, while the ARM 

processor will manage higher-level tasks and 

control the overall operation. FPGA Configuration: 

Using the Vivado Design Suite, the I2C protocol 

and security features will be coded in Verilog. The 

design will be synthesized and optimized for the 

FPGA resources. Real-Time Testing: Once 

implemented on the FPGA, the design will be tested 

in real-time with various I2C peripherals, assessing 

the functionality, speed, and security of the 

communication. Data Throughput: The maximum 

rate at which data can be securely transmitted over 

the I2C bus without compromising security. 

3.4. Latency  

The time taken for a complete communication 

cycle, from the start condition to the stop condition. 

The design aims to minimize latency while ensuring 

security measures are in place. [11-15] 

3.5. Resource Utilization 

The amount of FPGA resources (logic cells, 

memory blocks) consumed by the secure I2C 

implementation. Optimization techniques will be 

employed to ensure efficient use of resources. Error 

Rate: The frequency of errors encountered during 

data transmission. The design aims for a low error 

rate, facilitated by robust error detection 

mechanisms. Encryption: AES (Advanced 

Encryption Standard) will be used to encrypt data 

during transmission, ensuring that even if 

intercepted, the data remains secure. 

Authentication:  A challenge-response mechanism 
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will be employed to verify the identity of the master 

and slave devices, preventing unauthorized access 

to the I2C bus. Data Integrity Checks: The 

incorporation of CRC will help ensure that any 

alterations to the data during transmission are 

detected and addressed. This proposed design for a 

secure I2C protocol outlines a comprehensive 

approach that combines robust security features 

with efficient communication methods. By utilizing 

the Xilinx Vivado Design Suite and the Zybo Z7 

development board, the project aims to deliver a 

reliable solution that meets the demands of modern 

embedded systems. This secure I2C 

implementation will not only enhance data 

protection but also pave the way for more secure 

communication protocols in future applications. 

 

 
Figure 1 12C Master  

 
The image shows a typical I2C (Inter-Integrated 

Circuit) communication bus. It illustrates the 

structure of a system where an I2C master 

communicates with multiple I2C slaves using two 

main signal lines.SCL (Serial Clock Line): This line 

carries the clock signals generated by the master to 

synchronize data transmission.SDA (Serial Data 

Line): This line is used for the bidirectional 

transmission of data between the master and slaves. 

Master Device: This device controls 

communication by generating the clock signal on 

the SCL line. It also initiates communication and 

sends data requests to the slave devices. There is 

always one master in an I2C communication 

system, although multi-master configurations are 

possible but more complex. Figure 1 12C Master 

3.6. Slave Devices 

The diagram shows three slave devices, each 

connected to the same two wires (SCL and SDA). 

Each slave is assigned a unique address, allowing 

the master to communicate with each individually. 

Pull-up Resistors: These resistors are connected 

between the lines (SCL and SDA) and the supply 

voltage (Vcc). Pull-up resistors are essential in I2C 

communication because the bus lines are 

"opendrain." In this configuration, devices can only 

pull the line to ground (logic 0). To achieve logic 1, 

the pull-up resistors ensure that the line returns to a 

high state when no device is pulling it low. 

Addressing: Each slave device has a unique 7-bit or 

10-bit address assigned by the manufacturer or 

configured by the user. When the master wants to 

communicate with a specific slave, it sends this 

address over the SDA line. Start and Stop 

Conditions The I2C bus uses specific conditions to 

initiate and end communication Start Condition The 

master pulls the SDA line low while SCL is 

high.Stop Condition: The master releases the SDA 

line high while SCL remains high. Data Transfer: 

Data is transferred in 8-bit bytes, with each byte 

followed by an acknowledgment (ACK) bit. The 

master or slave pulls the SDA line low to signal an 

acknowledgment after receiving a byte. Clock 

Stretching: Some slave devices may need more time 

to process data. To accommodate this, they can hold 

the SCL line low, effectively "stretching" the clock 

and pausing the communication until they're ready. 

3.7. Two-wire Bus:  

It uses only two wires (SCL and SDA) for 

communication, even with multiple devices.Simple 

and Efficient: Allows for the easy addition of 

multiple devices without complex 

wiring.Addressing Mechanism: Each device is 

individually addressable, simplifying 

communication with multiple peripherals. I2C 

supports multi-master configurations, where more 

than one master can attempt to control the bus. 

When two or more masters initiate communication 

at the same time, arbitration ensures that only one 

master gets to control the bus without corrupting the 

data. The masters monitor the SDA line during each 

clock pulse. If a master sends a high (logic 1) but 

detects that the SDA line is low (logic 0), it will stop 

communicating, thus losing the arbitration. The 

master that holds control of the SDA line continues 

the communication. Every byte of data sent on the 

SDA line must be acknowledged. After receiving a 

byte, the receiver (either master or slave) pulls the 

SDA line low during the 9th clock pulse (ACK). If 

the receiver does not pull the line low (NACK), it 

indicates that it is unable or unwilling to receive 

further data. The master can then either retry or 

terminate the communication. I2C supports 
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different data rates: Standard Mode: Up to 100 

kbps.Fast Mode: Up to 400 kbps.Fast Mode Plus: 

Up to 1 Mbps.High-Speed Mode: Up to 3.4 

Mbps.The clock speed is set by the master device, 

and all slaves on the bus must be capable of 

operating at that speed. The pull-up resistor values 

are critical in determining the rise time of the 

signals, which directly affects the maximum speed 

of the bus. Start Condition: The master initiates 

communication by sending a start condition (SDA 

line goes low while SCL is high). Address Frame: 

The master transmits the 7-bit or 10-bit address of 

the slave it wants to communicate with, followed by 

a read/write bit (0 for write, 1 for read). 

Acknowledgment: The addressed slave responds by 

pulling SDA low (ACK). Data Transfer: Data is 

then transferred byte- by-byte. Each byte is 

followed by an acknowledgment from the receiver. 

Sometimes, the master may need to initiate another 

communication sequence with the same or different 

slave without releasing the bus (i.e., without issuing 

a stop condition). In this case, the master issues a 

repeated start condition, allowing it to maintain 

control of the bus. Some microcontrollers and I2C-

enabled devices offer hardware I2C modules, which 

handle all the complexities of the protocol 

internally, requiring only minimal programming 

effort. There are also bit- banged I2C 

implementations, where the protocol is emulated in 

software, giving more flexibility but at the cost of 

performance. Some microcontrollers and I2C-

enabled devices offer hardware I2C modules, which 

handle all the complexities of the protocol 

internally, requiring only minimal programming 

effort. There are also bit-banged I2C 

implementations, where the protocol is emulated in 

software, giving more flexibility but at the cost of 

performance. In multi-master systems, clock 

synchronization is critical. When a master releases 

the SCL line (allows it to go high), all other masters 

observe this change. The slowest device controls 

the pace of communication, ensuring that no 

devices are overwhelmed. This is important in 

systems with devices of different speeds. Bus 

Contention:  When multiple masters try to access 

the bus simultaneously, it can lead to contention if 

not properly handled through arbitration. Noise and 

Signal Integrity: Long cables or noisy environments 

can cause signal degradation, affecting 

communication reliability. Pull-up resistors need to 

be carefully chosen for the environment to ensure 

clean signal transitions. 

4. Results and Discussions 

 

 
Figure 2 Block Diagram 

 

Address Conflicts: If two devices on the bus share 

the same address, communication will be 

unreliable. Care must be taken when choosing 

devices and setting their addresses The I2C bus is a 

versatile, efficient communication protocol that 

enables communication between multiple devices 

over just two wires. Its addressing scheme, master- 

slave architecture, and support for multi-master 

configurations make it widely used in embedded 

systems. Careful consideration of pullup resistors, 

data rates, and signal integrity is essential for 

ensuring a reliable I2C system. The diagram above 

illustrates a typical I2C setup, with one master 

controlling multiple slaves via shared SDA and 

SCL lines. The correct timing of signals on the I2C 

bus is critical to ensure proper communication. The 

key timing elements are: Setup Time (tSU): The 

minimum time that data must be stable before the 

clock signal changes.Hold Time (tHD): The 

minimum time that data must remain stable after the 

clock signal changes.Clock Low Time (tLOW) and 

Clock High Time (tHIGH): The minimum time that 

the clock signal must stay low and high, 

respectively, to ensure proper timing.Rise Time 

(tR) and Fall Time (tF): The time it takes for the 

signals on the SDA and SCL lines to rise from low 

to high (tR) or fall from high to low (tF). These are 

influenced by the pull-up resistors and the bus 

capacitance.The I2C specification provides 

different timing requirements for each mode 

(Standard, Fast, Fast Plus, and High-Speed), 

ensuring compatibility between devices of various 

speeds. One of the limitations of the I2C bus is its 

sensitivity to the length of the wires and the 

capacitance of the bus. As the length of the bus 

increases, the capacitance also increases. This 
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increased capacitance slows down the rise and fall 

times of the signals, limiting the maximum 

communication speed. In situations where two or 

more devices share the same I2C address, 

communication becomes unreliable because the 

master cannot differentiate between them. To solve 

this issue. Address Pins: Some I2C devices provide 

pins that can be connected to either high (Vcc) or 

low (GND) to modify their addresses. This allows 

the user to assign different addresses to identical 

devices.I2C Multiplexers (MUX): These devices 

allow multiple I2C buses to be connected to a single 

master Figure 2 shows Block Diagram. This project 

enhances the I2C protocol by adding security 

features such as encryption and authentication to 

protect data during transmission. Using Verilog and 

the Xilinx Vivado Design Suite, the secure I2C 

protocol was implemented and tested on the Zybo 

Z7 development board. The results showed that the 

secure I2C protocol maintained data integrity and 

confidentiality without significantly affecting 

system performance, demonstrating the feasibility 

of secure communication in embedded systems. 

Figure 3 shows Multiplexers, Figure 4 shows 

Waveforms, Figure 5 shows Inter Integrated Circuit 

 

 
Figure 3 Multiplexers 

 

 
Figure 4 Waveforms  

 
Figure 5 Inter Integrated Circuit 

 

Conclusion 

The successful implementation of the I2C (Inter 

Integrated Circuit) protocol using Verilog 

demonstrates the practical application of hardware 

description languages in designing. 
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