
RESEARCH ARTICLE

RSP Science Hub

International Research Journal on Advanced Science Hub
2582-4376

www.rspsciencehub.com
 Vol. 07, Issue 01 January

http://dx.doi.org/10.47392/IRJASH.2025.007

 OPEN ACCESS 51

Implement I2C Protocol for Secure Data Transfer Using Verilog
B. Ravi kumar1, Kunta Nikhitha2, Punnami Manogna3, Begampeta Nanda kishore4
1Associate professor, Dept. of ECE, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.
2,3,4B Tech student, Dept. of ECE, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.

Emails: b.ravikumar@iare.ac.in1, nikithakunta16@gmail.com2, manognapunnami@gmail.com3,

nandakishor8284@gmail.com4

1. Introduction
The I2C (Inter-Integrated Circuit) protocol is a

communication standard that is commonly used in

embedded systems. This protocol allows various

devices, such as sensors, microcontrollers, and

Article history Abstract

Received: 16 December 2024

Accepted: 3 January 2025

Published: 31 January 2025

Keywords:
I2C Protocol, Embedded

Systems, Secure Data

Transfer, Verilog, Encryption,

Authentication, Data Integrity,

Data Confidentiality, Xilinx

Vivado Design Suite, Zybo Z7

Development Board.

Digital The I2C (Inter-Integrated Circuit) protocol is widely used in embedded

systems for enabling communication between various devices such as sensors,

microcontrollers, and other peripherals. However, early implementations of

the I2C protocol focused primarily on data transfer efficiency rather than

security This project aims to implement a secure data transfer mechanism for

the I2C protocol using Verilog, a hardware description language widely used

for designing and modelling electronic systems. Our implementation enhances

the traditional I2C protocol by integrating security features that protect data

from unauthorized access during transmission. By using encryption and

authentication techniques, the project ensures that data integrity and

confidentiality are maintained throughout the communication process. The

Xilinx Vivado Design Suite is utilized for the synthesis, simulation, and testing

of the secure I2C protocol. Xilinx software provides a robust environment for

designing hardware-based systems, offering features such as timing analysis,

design optimization, and resource management. The secure I2C protocol was

implemented and simulated using Verilog code within this software, enabling

thorough testing and debugging prior to hardware deployment. The hardware

component of the project is based on the Zybo Z7 development board. The Zybo

Z7 kit provides an ideal platform for prototyping and testing the secure I2C

protocol, as it allows for real-time interaction between the FPGA and

peripheral devices connected through I2C communication. By running the

implemented design on this hardware, we were able to evaluate the real-world

performance and security of the system. The results demonstrate that the secure

I2C protocol operates efficiently on the Zybo Z7 kit, with minimal impact on

system performance. The integration of security features did not introduce

significant latency or resource overhead, indicating that secure communication

can be achieved without compromising speed or functionality. This successful

implementation highlights the feasibility of deploying secure I2C protocols in

hardware systems where data protection is a priority.

mailto:b.ravikumar@iare.ac.in
mailto:nikithakunta16@gmail.com
mailto:manognapunnami@gmail.com
mailto:nandakishor8284@gmail.com

Implement I2C Protocol for Secure Data 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 52

peripherals, to communicate with one another

efficiently. Its popularity stems from its simplicity

and effectiveness in connecting multiple devices

using only two wires: a data line (SDA) and a clock

line (SCL). In many applications, especially in

consumer electronics and automation, I2C is

favored because it enables multiple devices to share

the same communication bus. Each device on the

I2C bus has a unique address, allowing the master

device to send data to specific slaves without

interference. This makes it a flexible solution for a

wide range of applications, including smart home

devices, medical equipment, and industrial control

systems. However, while the I2C protocol excels in

efficiency, earlier implementations did not

prioritize security. Many systems were designed

with a focus on speed and reliability, which often

meant overlooking the vulnerabilities that could

arise during data transmission. As a consequence,

these systems became susceptible to risks such as

data interception, manipulation, and unauthorized

access. This lack of security can lead to significant

problems, especially in applications that handle

sensitive information or critical operations. For

example, in healthcare applications, unauthorized

access to medical devices could compromise patient

safety and privacy. Similarly, in industrial control

systems, manipulated data could result in faulty

operations, leading to safety hazards or financial

losses. Therefore, it is increasingly important to

address these vulnerabilities in modern I2C

implementations. To enhance the security of the

I2C protocol, various measures can be integrated.

One approach is to implement encryption

techniques, which convert data into a secure format

that is unreadable to unauthorized users. By

encrypting the data being transmitted over the I2C

bus, even if an attacker intercepts the

communication, they would not be able to decipher

the information without the proper decryption key.

Another important aspect of securing the I2C

protocol is authentication. This process ensures that

both the master and slave devices are legitimate and

authorized to communicate with each other. By

implementing robust authentication mechanisms,

such as digital signatures or challenge-response

protocols, devices can verify each other's identities

before exchanging sensitive information.

Furthermore, maintaining data integrity is crucial in

secure I2C communication. This means ensuring

that the data sent from one device to another

remains unchanged during transmission.

Techniques such as checksums or cryptographic

hashes can be employed to verify the integrity of the

data, alerting the devices if any alterations occur

during the transfer. As embedded systems become

more interconnected, the need for secure

communication protocols like I2C is more pressing

than ever. By integrating security features into the

I2C protocol, developers can create systems that not

only perform efficiently but also protect against

potential threats. This dual focus on performance

and security is essential for building trust in the

technology that powers modern applications. In

summary, while the I2C protocol remains a

fundamental communication standard in embedded

systems, its early implementations must evolve to

address security vulnerabilities. By incorporating

encryption, authentication, and data integrity

measures, it is possible to create a secure

environment for data transfer. As the demand for

secure communication continues to grow,

enhancing the I2C protocol is a necessary step

towards ensuring the safety and reliability of

embedded systems in various applications.

Embedded systems are specialized computing

systems designed to perform dedicated functions

within larger systems. They are ubiquitous in

everyday devices, from household appliances to

automotive systems and industrial machinery.

Given their integration into critical operations, the

security of these systems is paramount. The

interconnected nature of embedded systems also

means that a vulnerability in one device can

compromise the entire network, making it crucial to

implement robust security measures. As technology

advances, so do the tactics of malicious actors.

Cybersecurity threats have become more

sophisticated, with attackers exploiting

vulnerabilities in various protocols, including I2C.

For example, an attacker might employ techniques

like sniffing, where they intercept data on the

communication bus to gain unauthorized access to

sensitive information. Similarly, spoofing attacks

can allow unauthorized devices to impersonate

legitimate devices on the I2C bus, leading to data

manipulation or unauthorized control. Regular

Updates and Patching: Continuous monitoring for

vulnerabilities and applying updates to both

firmware and software can help protect against

B. Ravi kumar et al 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 53

newly discovered threats. As technology advances,

so do the tactics of malicious actors. Cybersecurity

threats have become more sophisticated, with

attackers exploiting vulnerabilities in various

protocols, including I2C. For example, an attacker

might employ techniques like sniffing, where they

intercept data on the communication bus to gain

unauthorized access to sensitive information.

Similarly, spoofing attacks can allow unauthorized

devices to impersonate legitimate devices on the

I2C bus, leading to data manipulation or

unauthorized control. Many industries have specific

standards and regulations that dictate the level of

security required for embedded systems. For

example, the Medical Device Regulation (MDR) in

healthcare requires that medical devices meet

stringent security standards to protect patient data.

Compliance with these regulations often drives the

adoption of secure communication protocols like

I2C, ensuring that devices can be trusted in their

operations. The trend toward the Internet of Things

(IoT) is pushing the need for secure I2C

implementations. As more devices become

interconnected, the amount of data transmitted

increases, amplifying the potential attack surface.

Future I2C implementations will likely need to

support advanced security protocols, such as

Transport Layer Security (TLS), to safeguard

communications effectively. The integration of

security features into the I2C protocol is not just an

enhancement but a necessity in today’s technology

landscape. By addressing vulnerabilities through

encryption, authentication, and robust data integrity

measures, developers can create secure embedded

systems. This evolution is critical for maintaining

trust in technology and ensuring that devices can

operate safely in an increasingly connected world.

As we continue to innovate, prioritizing security

will be essential for the future of embedded systems

and communication protocols. Security in

embedded systems goes beyond just protecting

data; it also involves ensuring the overall integrity

and functionality of the system. A breach in security

can lead not only to data loss but also to catastrophic

failures in critical applications, such as those found

in healthcare or automotive industries. For instance,

unauthorized access to a medical device can disrupt

treatment or even endanger a patient’s life.

Similarly, in automotive systems, an attacker

gaining control over vehicle operations could pose

severe risks to driver and passenger safety. A

comprehensive approach to security involves threat

modeling, which helps identify potential

vulnerabilities and the impacts of various threats.

When analyzing the I2C protocol, it’s essential to

consider: Physical Attacks: Since I2C is often used

in embedded systems where physical access is

possible, attackers can tap into the communication

lines to intercept or manipulate data. Replay

Attacks: An attacker might capture valid

communication between devices and replay it later

to gain unauthorized access or cause incorrect

actions. Denial of Service (DoS): An attacker may

flood the bus with requests, preventing legitimate

devices from communicating effectively. Man-in-

the Middle Attacks: This occurs when an attacker

secretly intercepts and relays messages between

two devices, potentially altering the

communication. [1-5]

2. Existing Method

The Xilinx Vivado Design Suite is a powerful tool

utilized for the synthesis, simulation, and testing of

the secure I2C protocol. This software environment

is designed specifically for hardwarebased systems,

making it ideal for developing complex applications

like secure communication protocols. One of the

primary advantages of using Vivado is its

comprehensive feature set, which includes timing

analysis, design optimization, and resource

management. These features are crucial for

ensuring that the I2C protocol operates efficiently

while meeting specific performance criteria. In this

project, the secure I2C protocol was implemented

using Verilog, a widely used hardware description

language that allows for precise modeling of digital

systems. By coding the protocol in Verilog, we

could leverage the simulation capabilities of the

Vivado suite to thoroughly test and debug the

design before deploying it to hardware. This

iterative testing process is essential for identifying

potential issues early, minimizing the risk of errors

during actual operation. The hardware component

of the project is centered around the Zybo Z7

development board, which is built on the Xilinx

Zynq-7000 FPGA platform. This board integrates

an ARM Cortex-A9 processor with an FPGA,

providing a flexible environment for both software

and hardware development. The combination of

these two components allows for real-time

interaction between the FPGA and peripheral

Implement I2C Protocol for Secure Data 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 54

devices connected through I2C communication.

Using the Zybo Z7 kit for prototyping the secure

I2C protocol offers several advantages. The board’s

architecture supports various I2C devices, making

it easy to test the protocol with multiple peripherals.

This real-time interaction enables developers to

assess the protocol's performance under different

conditions, allowing for optimization based on

actual operational data. The ability to run the

implemented design on the Zybo Z7 also facilitates

the evaluation of the system's security features. By

observing how the protocol performs during live

data transfer, we can ensure that encryption and

authentication measures function as intended. This

is particularly important in security- critical

applications, where any vulnerability could lead to

data breaches or unauthorized access. The Vivado

Design Suite further enhances the development

process by providing tools for performance analysis

and debugging. These tools allow engineers to

visualize data flows, monitor signal integrity, and

adjust parameters to optimize the design. As a

result, the development of the secure I2C protocol

is streamlined, leading to a more robust and reliable

implementation. Once the design is thoroughly

tested and verified in the Vivado environment, it

can be deployed to the Zybo Z7 board for final

evaluation. This seamless transition from

simulation to hardware testing is a significant

advantage of using the Vivado suite, as it reduces

the overall development time and increases

confidence in the final product. Utilizing a

hierarchical design approach in Vivado allows for

modular development. This method breaks down

the secure I2C protocol into smaller, manageable

components, such as the master controller, slave

interface, and security modules. Each module can

be developed and tested independently before

integration, which simplifies debugging and

enhances maintainability In designs involving

multiple clock domains, managing clock domain

crossings is critical. Vivado provides tools for

analyzing and mitigating issues related to

metastability. Implementing proper

synchronization techniques ensures reliable

communication between the I2C master and slaves

operating on different clock frequencies. Before

deploying the secure I2C protocol on hardware,

extensive simulation is conducted using Vivado’s

simulation environment. This includes testing

various scenarios such as normal operation, edge

cases, and error conditions. By simulating both the

data flow and security mechanisms, developers can

validate that encryption and authentication

processes work correctly under different conditions.

Vivado supports a variety of intellectual property

(IP) cores that can accelerate development. For

instance, integrating predesigned IP cores for I2C

communication can simplify implementation.

Additionally, security IP cores, such as those for

encryption and decryption, can be leveraged to

enhance the protocol without requiring extensive

custom coding. Timing analysis is crucial for

ensuring that the secure I2C protocol meets the

required speed specifications. Vivado allows users

to set timing constraints and perform static timing

analysis to identify potential issues. Ensuring that

all signals meet their timing requirements is

essential for reliable communication The Integrated

Logic Analyzer (ILA) in Vivado provides realtime

debugging capabilities. By embedding the ILA into

the design, developers can monitor internal signals

and data transactions during operation. This tool is

invaluable for troubleshooting and verifying that

the secure I2C protocol behaves as expected in real-

time scenarios. Using Vivado's optimization tools,

developers can analyze resource utilization for the

secure I2C design. Techniques such as pipelining,

resource sharing, and retiming can be applied to

maximize efficiency. This is especially important

on resourceconstrained platforms like the Zybo Z7.

In addition to hardware development, integrating

firmware that manages the secure I2C

communication is essential. Using software

development environments compatible with the

ARM Cortex-A9 processor on the Zybo Z7,

developers can implement the logic for handling

encryption keys, managing device addresses, and

processing incoming and outgoing data securely.

To ensure robustness, the secure I2C protocol is

tested under various environmental conditions, such

as different temperatures and voltage levels. This

testing helps identify how the protocol performs in

real-world scenarios and whether security measures

hold up under different operational stresses

Finally, incorporating a feedback loop into the

development process allows for continuous

improvement of the secure I2C protocol. Gathering

data from testing phases and user feedback can

guide subsequent iterations of the design, helping to

B. Ravi kumar et al 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 55

refine security features and enhance performance

over time. These existing methods highlight a

comprehensive approach to developing a secure

I2C protocol using the Xilinx Vivado Design Suite

and Zybo Z7 development board. By employing

these strategies, developers can create a robust,

efficient, and secure communication system

tailored to meet the demands of modern embedded

applications. [6-10]

3. Proposed Design

The proposed design aims to implement a secure

I2C (InterIntegrated Circuit) protocol that enhances

data integrity and confidentiality while maintaining

efficient communication between embedded

devices. This design leverages the Xilinx Vivado

Design Suite for synthesis, simulation, and testing,

using the Zybo Z7 development board as the

hardware platform. The secure I2C protocol will be

structured into several key components:

3.1. Master Controller

The master device initiates communication with

slave devices. It includes logic for generating start

and stop conditions, sending data, and managing

acknowledgment signals. Slave Interface: Each

slave device will have an interface that responds to

the master’s requests. It will interpret commands

and send data back securely. Security Module: This

module will integrate encryption and authentication

functionalities. It will be responsible for securing

data before transmission and verifying the identity

of communicating devices. Error Detection Unit:

To maintain data integrity, this unit will implement

error detection mechanisms, such as CRC (Cyclic

Redundancy Check), to identify any corruption in

transmitted data. Timing Control: A timing control

unit will manage the timing of data transfers to

ensure adherence to I2C specifications.

Initialization: Upon power-up, the master controller

initializes the I2C bus and configures the security

module. It will load encryption keys and set the

appropriate communication parameters.

3.2. Master-Slave Communication

Start Condition: The master generates a start

condition to signal the beginning of a

communication session. Addressing: The master

sends the address of the target slave device. The

security module encrypts this address to protect

against interception. Data Transmission: Data is

sent from the master to the slave, with the security

module encrypting the data before transmission.

3.3. Acknowledgment
The slave sends an acknowledgment signal back to

the master, indicating successful receipt of the data.

Slave Response: If the master requests data from the

slave. The slave retrieves the requested data and

encrypts it using the security module.The encrypted

data is sent back to the master, which decrypts it for

use.Error Handling: The error detection unit

continuously monitors the data being transmitted. If

an error is detected, the unit generates a signal to

initiate a retransmission or notify the master.

Termination: The master sends a stop condition to

end the communication session. The timing control

unit ensures that all signals are maintained for the

required duration before releasing the bus. The

design will be implemented on the Zybo Z7

development board, which features an ARM

Cortex-A9 processor and a Xilinx Zynq-7000

FPGA. The FPGA will handle the secure I2C

protocol's hardware logic, while the ARM

processor will manage higher-level tasks and

control the overall operation. FPGA Configuration:

Using the Vivado Design Suite, the I2C protocol

and security features will be coded in Verilog. The

design will be synthesized and optimized for the

FPGA resources. Real-Time Testing: Once

implemented on the FPGA, the design will be tested

in real-time with various I2C peripherals, assessing

the functionality, speed, and security of the

communication. Data Throughput: The maximum

rate at which data can be securely transmitted over

the I2C bus without compromising security.

3.4. Latency

The time taken for a complete communication

cycle, from the start condition to the stop condition.

The design aims to minimize latency while ensuring

security measures are in place. [11-15]

3.5. Resource Utilization

The amount of FPGA resources (logic cells,

memory blocks) consumed by the secure I2C

implementation. Optimization techniques will be

employed to ensure efficient use of resources. Error

Rate: The frequency of errors encountered during

data transmission. The design aims for a low error

rate, facilitated by robust error detection

mechanisms. Encryption: AES (Advanced

Encryption Standard) will be used to encrypt data

during transmission, ensuring that even if

intercepted, the data remains secure.

Authentication: A challenge-response mechanism

Implement I2C Protocol for Secure Data 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 56

will be employed to verify the identity of the master

and slave devices, preventing unauthorized access

to the I2C bus. Data Integrity Checks: The

incorporation of CRC will help ensure that any

alterations to the data during transmission are

detected and addressed. This proposed design for a

secure I2C protocol outlines a comprehensive

approach that combines robust security features

with efficient communication methods. By utilizing

the Xilinx Vivado Design Suite and the Zybo Z7

development board, the project aims to deliver a

reliable solution that meets the demands of modern

embedded systems. This secure I2C

implementation will not only enhance data

protection but also pave the way for more secure

communication protocols in future applications.

Figure 1 12C Master

The image shows a typical I2C (Inter-Integrated

Circuit) communication bus. It illustrates the

structure of a system where an I2C master

communicates with multiple I2C slaves using two

main signal lines.SCL (Serial Clock Line): This line

carries the clock signals generated by the master to

synchronize data transmission.SDA (Serial Data

Line): This line is used for the bidirectional

transmission of data between the master and slaves.

Master Device: This device controls

communication by generating the clock signal on

the SCL line. It also initiates communication and

sends data requests to the slave devices. There is

always one master in an I2C communication

system, although multi-master configurations are

possible but more complex. Figure 1 12C Master

3.6. Slave Devices

The diagram shows three slave devices, each

connected to the same two wires (SCL and SDA).

Each slave is assigned a unique address, allowing

the master to communicate with each individually.

Pull-up Resistors: These resistors are connected

between the lines (SCL and SDA) and the supply

voltage (Vcc). Pull-up resistors are essential in I2C

communication because the bus lines are

"opendrain." In this configuration, devices can only

pull the line to ground (logic 0). To achieve logic 1,

the pull-up resistors ensure that the line returns to a

high state when no device is pulling it low.

Addressing: Each slave device has a unique 7-bit or

10-bit address assigned by the manufacturer or

configured by the user. When the master wants to

communicate with a specific slave, it sends this

address over the SDA line. Start and Stop

Conditions The I2C bus uses specific conditions to

initiate and end communication Start Condition The

master pulls the SDA line low while SCL is

high.Stop Condition: The master releases the SDA

line high while SCL remains high. Data Transfer:

Data is transferred in 8-bit bytes, with each byte

followed by an acknowledgment (ACK) bit. The

master or slave pulls the SDA line low to signal an

acknowledgment after receiving a byte. Clock

Stretching: Some slave devices may need more time

to process data. To accommodate this, they can hold

the SCL line low, effectively "stretching" the clock

and pausing the communication until they're ready.

3.7. Two-wire Bus:

It uses only two wires (SCL and SDA) for

communication, even with multiple devices.Simple

and Efficient: Allows for the easy addition of

multiple devices without complex

wiring.Addressing Mechanism: Each device is

individually addressable, simplifying

communication with multiple peripherals. I2C

supports multi-master configurations, where more

than one master can attempt to control the bus.

When two or more masters initiate communication

at the same time, arbitration ensures that only one

master gets to control the bus without corrupting the

data. The masters monitor the SDA line during each

clock pulse. If a master sends a high (logic 1) but

detects that the SDA line is low (logic 0), it will stop

communicating, thus losing the arbitration. The

master that holds control of the SDA line continues

the communication. Every byte of data sent on the

SDA line must be acknowledged. After receiving a

byte, the receiver (either master or slave) pulls the

SDA line low during the 9th clock pulse (ACK). If

the receiver does not pull the line low (NACK), it

indicates that it is unable or unwilling to receive

further data. The master can then either retry or

terminate the communication. I2C supports

B. Ravi kumar et al 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 57

different data rates: Standard Mode: Up to 100

kbps.Fast Mode: Up to 400 kbps.Fast Mode Plus:

Up to 1 Mbps.High-Speed Mode: Up to 3.4

Mbps.The clock speed is set by the master device,

and all slaves on the bus must be capable of

operating at that speed. The pull-up resistor values

are critical in determining the rise time of the

signals, which directly affects the maximum speed

of the bus. Start Condition: The master initiates

communication by sending a start condition (SDA

line goes low while SCL is high). Address Frame:

The master transmits the 7-bit or 10-bit address of

the slave it wants to communicate with, followed by

a read/write bit (0 for write, 1 for read).

Acknowledgment: The addressed slave responds by

pulling SDA low (ACK). Data Transfer: Data is

then transferred byte- by-byte. Each byte is

followed by an acknowledgment from the receiver.

Sometimes, the master may need to initiate another

communication sequence with the same or different

slave without releasing the bus (i.e., without issuing

a stop condition). In this case, the master issues a

repeated start condition, allowing it to maintain

control of the bus. Some microcontrollers and I2C-

enabled devices offer hardware I2C modules, which

handle all the complexities of the protocol

internally, requiring only minimal programming

effort. There are also bit- banged I2C

implementations, where the protocol is emulated in

software, giving more flexibility but at the cost of

performance. Some microcontrollers and I2C-

enabled devices offer hardware I2C modules, which

handle all the complexities of the protocol

internally, requiring only minimal programming

effort. There are also bit-banged I2C

implementations, where the protocol is emulated in

software, giving more flexibility but at the cost of

performance. In multi-master systems, clock

synchronization is critical. When a master releases

the SCL line (allows it to go high), all other masters

observe this change. The slowest device controls

the pace of communication, ensuring that no

devices are overwhelmed. This is important in

systems with devices of different speeds. Bus

Contention: When multiple masters try to access

the bus simultaneously, it can lead to contention if

not properly handled through arbitration. Noise and

Signal Integrity: Long cables or noisy environments

can cause signal degradation, affecting

communication reliability. Pull-up resistors need to

be carefully chosen for the environment to ensure

clean signal transitions.

4. Results and Discussions

Figure 2 Block Diagram

Address Conflicts: If two devices on the bus share

the same address, communication will be

unreliable. Care must be taken when choosing

devices and setting their addresses The I2C bus is a

versatile, efficient communication protocol that

enables communication between multiple devices

over just two wires. Its addressing scheme, master-

slave architecture, and support for multi-master

configurations make it widely used in embedded

systems. Careful consideration of pullup resistors,

data rates, and signal integrity is essential for

ensuring a reliable I2C system. The diagram above

illustrates a typical I2C setup, with one master

controlling multiple slaves via shared SDA and

SCL lines. The correct timing of signals on the I2C

bus is critical to ensure proper communication. The

key timing elements are: Setup Time (tSU): The

minimum time that data must be stable before the

clock signal changes.Hold Time (tHD): The

minimum time that data must remain stable after the

clock signal changes.Clock Low Time (tLOW) and

Clock High Time (tHIGH): The minimum time that

the clock signal must stay low and high,

respectively, to ensure proper timing.Rise Time

(tR) and Fall Time (tF): The time it takes for the

signals on the SDA and SCL lines to rise from low

to high (tR) or fall from high to low (tF). These are

influenced by the pull-up resistors and the bus

capacitance.The I2C specification provides

different timing requirements for each mode

(Standard, Fast, Fast Plus, and High-Speed),

ensuring compatibility between devices of various

speeds. One of the limitations of the I2C bus is its

sensitivity to the length of the wires and the

capacitance of the bus. As the length of the bus

increases, the capacitance also increases. This

Implement I2C Protocol for Secure Data 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 58

increased capacitance slows down the rise and fall

times of the signals, limiting the maximum

communication speed. In situations where two or

more devices share the same I2C address,

communication becomes unreliable because the

master cannot differentiate between them. To solve

this issue. Address Pins: Some I2C devices provide

pins that can be connected to either high (Vcc) or

low (GND) to modify their addresses. This allows

the user to assign different addresses to identical

devices.I2C Multiplexers (MUX): These devices

allow multiple I2C buses to be connected to a single

master Figure 2 shows Block Diagram. This project

enhances the I2C protocol by adding security

features such as encryption and authentication to

protect data during transmission. Using Verilog and

the Xilinx Vivado Design Suite, the secure I2C

protocol was implemented and tested on the Zybo

Z7 development board. The results showed that the

secure I2C protocol maintained data integrity and

confidentiality without significantly affecting

system performance, demonstrating the feasibility

of secure communication in embedded systems.

Figure 3 shows Multiplexers, Figure 4 shows

Waveforms, Figure 5 shows Inter Integrated Circuit

Figure 3 Multiplexers

Figure 4 Waveforms

Figure 5 Inter Integrated Circuit

Conclusion

The successful implementation of the I2C (Inter

Integrated Circuit) protocol using Verilog

demonstrates the practical application of hardware

description languages in designing.

References

[1]. Kotenko, "Active Vulnerability Assessment

of Computer Networks by Simulation of

Complex Remote Attacks," Proceedings of

the 2003 International Conference on

Computer Networks and Mobile

Computing. ICCNMC-03. Shanghai, China,

October 20-23, 2003. IEEE Computer

Society. 2003. pp.40-47.

[2]. I. Kotenko, "Agent-Based Modeling and

Simulation of Cyber Warfare between

Malefactors and Security Agents in Internet,

" Proceedings of 19th European Simulation

Multiconference “Simulation in wider

Europe” (ESM’05). Riga, Latvia, 1–4 June

2005. pp.533-543.

[3]. V. Desnitsky, A. Chechulin, I. Kotenko,

Levshun D., and M. Kolomeec "Combined

Design Technique for Secure Embedded

Devices Exemplified by a Perimeter

Protection System," Trudy SPIIRAN 48,

2016, pp.5.

[4]. F. Stefanni, "A Design & Verification

Methology for Networked Embedded

Systems," Ph.D. Thesis, University of

Verona, Department of Computer Science,

Italy. April 7, 2011.

[5]. Official website of SecFutur project.

http://www.secfutur.eu/. Accessed January

2018

[6]. A. Chechulin, I. Kotenko, and V. Desnitsky,

"An approach for network information flow

analysis for systems of embedded

components," Lecture Notes in Computer

B. Ravi kumar et al 2025, Vol. 07, Issue 01 January

International Research Journal on Advanced Science Hub (IRJASH) 59

Science, Springer Verlag, Vol. 7531.

Springer, Berlin, Heidelberg, 2012. pp. 146

155.

[7]. M. Howard, S. Lipner, "The Security

Development Lifecycle. SDL: A Process for

Developing Demonstrably More Secure

Software," Microsoft Press, Redmond,

Washington, 2006.

[8]. Official Cisco Secure Development

Lifecycle(CiscoSDL)documentationURL:h

ttp://www.cisco.com/c/en/us/about/security

center/security -programs/secure

developmentlifecycle.html. Accessed

January 2018.

[9]. S. Riedmüller, U. Brecht, and A. Sikora,

"IPsec for Embedded Systems," ITCS 2005.

[10]. R. Hummen, T. Heer, and K. Wehrle, "A

security protocol adaptation layer for the IP-

based internet of things," Interconnecting

smart objects with the Internet workshop.

Vol. 3, 2011.

[11]. K. Chelli, "Security issues in wireless sensor

networks: attacks and countermeasures,"

Proceedings of the World Congress on

Engineering. Vol. 1, 2015.

[12]. N. Heintze, and J. D. Tygar, "A model for

secure protocols and their compositions,"

IEEE transactions on software engineering

22.1, 1996, pp.16-30.

[13]. B. Blanchet, "Automatic verification of

security protocols in the symbolic model:

The verifier ProVerif," Foundations of

Security Analysis and Design VII. Springer,

Cham, 2014, pp.54-87.

[14]. Avanesov, Y. Chevalier, M. Rusinowitch,

and M. Turuani, "Intruder deducibility

constraints with negation. decidability and

application to secured service

compositions," arXiv preprint

arXiv:1207.4871, 2012.

[15]. D. Levshun, A. Chechulin, and I. Kotenko,

"Design lifecycle for secure cyber-physical

systems based on embedded devices,"

Intelligent Data Acquisition and Advanced

Computing Systems: Technology and

Applications (IDAACS), 2017 9th IEEE

International Conference on. Vol. 1. IEEE,

2017.

