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1. Introduction

Electromagnetic interference (EMI) has emerged 

as a significant issue due to the swift progress in 

the electronics sector and telecommunications 

networks. Conducting polymers present a practical 

solution for EMI shielding applications (Ravindren 

et al., 2019). Various essential types of conducting 

polymers have been developed through 

nanoelectronics and nanotechnology (Panda and 
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The increasing use of electronic devices has led to the rising challenge of 

electromagnetic interference (EMI), necessitating efficient shielding 

materials. However, adding excessive fillers to polymer composites to 

enhance EMI shielding often results in higher costs, poor dispersion, and 

mechanical weakness. This research proposes a hybrid polymer composite 

using a Graphene substrate combined with conductive polymers like 

polyacetylene and multi-walled carbon nanotubes (MWCNTs), aimed at 

improving EMI shielding performance while maintaining mechanical 

integrity. The proposed design and optimization approach are assessed using 

ANSYS-HFSS software. To further enhance the prediction and optimization 

of EMI shielding effectiveness, a novel "bio-inspired predictive insight and 

optimization strategy" is introduced. This strategy employs "Bayesian-

enriched genetic programming" to handle the complex, nonlinear 

relationships in polymer composites, addressing the multi-objective 

optimization challenges. Additionally, the "multi-objective dominant 

crowding seagull (MDCS) optimization" model is used to optimize conflicting 

objectives and EMI shielding simultaneously, demonstrating improved 

shielding efficiency and superior performance in terms of prediction 

accuracy (98.7%), faster training time (19 seconds), and quicker prediction 

time (6 seconds). The results suggest that this combined approach can 

significantly enhance the mechanical, electrical, and EMI shielding 

properties of polymer composites, offering a promising solution for modern 

electronic applications. 
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Acharya, 2019). Polymer nanocomposites, 

consisting of polymer matrices and nanoscale 

reinforcement phases, are frequently utilized in 

composite materials because of their processing 

and shaping convenience. Graphene, a two-

dimensional material with nanoscale diameter and 

thickness, is employed to enhance the thermal and 

electromagnetic interference shielding capabilities 

of nanocomposites (Ha et al., 2019). It has been 

applied in radar absorption and EMI shielding for 

hybrid compounds incorporating Graphene Nano 

platelets as fillers. Based on extensive literature 

and documentation, we propose an innovative 

polymer composite containing Graphene to 

enhance EMI shielding effectiveness. This work is 

organized into seven chapters: the first chapter 

serves as an introduction, the second details the 

completed work, the third outlines design of 

polymer composite , fourth chapter presents the 

results of ANSYS simulation, fifth and sixth 

chapter explain the machine learning techniques 

used and seventh chapter explains the result of 

machine learning techniques. [1-3] 

2. Advanced Polymer Composite with 

Graphene Content for EMI Shielding 

The electromagnetic interference (EMI) resulting 

from high-frequency electrical radiation has 

become a significant threat to information security. 

To ensure effective shielding, it is essential to 

maintain high electrical conductivity, which is 

typically achieved through the use of filler 

particles. However, the presence of inferior filler 

particles can lead to severe electrical percolation 

issues and inadequate device impedance, 

drastically diminishing the conductivity of the 

composite. Additionally, an excessive amount of 

filler can destabilize the shield at elevated 

temperatures due to poor dispersion within the 

matrix and limited thermal stability. Consequently, 

a novel Intercalated Polyacetophenimide matrix 

can be developed, incorporating multiwalled 

carbon nanotubes as fillers to enhance the intrinsic 

conductivity and overall performance of the shield. 

The composition of Polyacetophenimide will 

include Polyetherimide, di-butyl sebacate, 

thiophene, and acetylene polymers. This 

discussion focuses on the creation of an innovative 

polymer composite containing Graphene. It 

elaborates on the selection process for various 

polymer composites, the mixing of these materials 

in different ratios, and the methods for 

incorporating Graphene and Multi-Walled Carbon 

Nanotubes as fillers. The Coupled Magnetic Stirrer 

technique is employed for the amalgamation of 

different polymers, while the Coupled Nano 

Stratum technique is utilized for the integration of 

the Graphene substrate (Guan et al., 2018). 

3. Novel Polymer Composite Design and 

Preparation Method 

Recently, conductive filler materials have been 

utilized in conjunction with conducting polymer-

based electromagnetic interference shields to 

enhance both the conductivity and thermal 

resilience of the shielding. In this context, the 

polymer matrix consists of a combination of 

polyetherimide and conducting polymers such as 

acetylene and thiophene, which we propose to 

name Polyacetophenemide. Polyetherimide is a 

thermoplastic renowned for its exceptional 

performance in engineering applications, 

characterized by high strength and stiffness at 

elevated temperatures, dimensional stability, long-

term heat resistance, and commendable electrical 

properties. We have opted for a blend of 

conductive polymers (acetylene and thiophene) 

that exhibit superior characteristics, as the EMI 

shielding material must possess conductive 

capabilities while minimizing the quantity of filler 

used. The properties of the Polyetherimide 

polymer (Ahmad et al., 2017) are detailed in Table 

1 below. The properties of Multi-Walled Carbon 

Nanotubes are presented in Table 2, while the 

properties of Thiophene are outlined in Table 3 

(Roncali, 1992). Lastly, the properties of 

Acetylene (West, 1980) are illustrated in (Table 1) 

 

Table 1 Properties of Polyetherimide 

Density 1,270 (kg/m3) 

Melting point 219 (oC) 

Thermal conductivity 0.22 (W/mK) 

Tensile modulus 3,276 (MPa) 

Tensile strength 126 (MPa) 

Poisson’s ratio 0.36 

    Coefficient of thermal expansion 5.58×10-6 (C-1) 

Glass transition temperature 227 (ºC) 

Melt index 0.42 (g/min) 

Linear thermal expansion 3.3 (ºC) 
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Table 2 Properties of MWCNTs 

Purity % 98% 

-OH Content 1.76 Wt% 

Outer diameter 10-20 nm 

Inner diameter 5-10 nm 

Length 0.5-2.0 µm 

Surface area >200 m2/g 

Density 0.22 g/cm3 

Electrical conductivity >100 S/cm 
 

Table 3 Properties of Thiophene 
Molar mass 84.14 g/mol 

Density 1.051 g/mL 

Melting point -38°C 

Boiling point 84°C 

Magnetic 

susceptibility (χ) 

-57.38·10-6 

cm3/mol 

Refractive index (nD) 1.5287 

 

Table 4 Properties of Acetylene 

Molar mass 26.038 g·mol-1 

Density 1.1772 kg/m3 

Melting point -80.8°C 

Conductivity 
4.4×10-5 

Siemens/cm 

Magnetic 

susceptibility (χ) 

-12.5×10-6 

cm3/mol 

 

3.1. Rule of Mixtures Formulae 

Inorder to find the permittivity, permeability and 

density we use rule of mixtures formulae Permittivity 

∈= (𝟏 − 𝑽𝒎) ∈𝒎+ 𝑽 ∈𝒇  --Equation 1 [4] 

Where ϵ - permittivity, Vm - Volume fraction of 

matrix, ϵm - permittivity of matrix, ϵf - permittivity 

of fiber. The permittivity value and volume fraction 

of each component is shown in Table 5 

 

Table 4 Permittivity Value and Volume Fraction 

of Components 

Material 
Volume 
fraction 

 
Permittivity 

value 

polyetherimide 50 = 0.5 Matrix 2.25 

polyacetylene 15=0.15 Matrix 2 

mwcnt 5=0.05 Fiber 60 

polythiophene 15=0.15 Matrix 6 

di butyl sebacate 15=0.15 Matrix 4.5 

Graphene 6.9 

 

Vm=(0.5+0.15+0.15+0.15) /4 = 0.2375 
Vf =0.05 

∈𝑚= 60 
Substituting all values in equation 3 we get permittivity 
as 5.8 
Also permittivity of graphene is 6.9 
Therefore, permittivity is = (5.8+6.9)/2 =6.35 

3.2. Permeability 

𝑃 = 𝑃𝑚 + 2𝑃𝑚
𝑃𝑓 − 𝑃𝑚

𝑃𝑓 + 𝑃𝑚 − 𝑉𝑓(𝑃𝑓 − 𝑃𝑚)
 

Where Pm - permeability of matrix composite, Pf - 

permeability of the fiber composite, Vf – Volume 

fraction of the fibre. The permeability value and 

volume fraction of each component is shown in Table 

6 

Table 6 Permeability Value and Volume 

Fraction of Components 

Material 
Volume 
fraction 

 
Permeability 

value 

polyetherimide 50 = 0.5 Matrix 0.01 

polyacetylene 15=0.15 Matrix 3x10-8 

mwcnt 5=0.05 Fibre 3 

polythiophene 15=0.15 Matrix 0.1 

di butyl sebacate 15=0.15 Matrix 5.4 

Graphene 82.95 

 
Pm = ( 0.01+3e-8+0.1+5.4)/4 = 1.377 
Pf = 3 
Substituting values of Pm, Pf, Vf  in equation 2  we get, 
P= 2.41 
Also the Permeability of graphene is 82.95 
Therefore overall permeability = (2.41+82.95)/2 = 
42.68 

3.3. Density   
𝞺V = 𝞺mVm+ 𝞺fVf  (Equation 3) 
Where ρm, ρf - density of matrix and fibers, Vm,  
Vf - Volume matrix and fibers. 
The density value and volume fraction of each 
component is shown in Table 7 
 

Table 6 Density Value and Volume Fraction of 
Components 

Material 

Volum
e 

fractio
n 

 
Density 
value 

polyetherimide 
50 = 
0.5 

Matri
x 

1.2 

polyacetylene 
15=0.1

5 
Matri

x 
0.4 

mwcnt 5=0.05 Fiber 0.22 

polythiophene 
15=0.1

5 
Matri

x 
1.05 

di butyl 
sebacate 

15=0.1
5 

Matri
x 

0.940 

Graphene = 2.65 

 

https://en.wikipedia.org/wiki/Molar_mass
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Melting_point
https://en.wikipedia.org/wiki/Boiling_point
https://en.wikipedia.org/wiki/Magnetic_susceptibility
https://en.wikipedia.org/wiki/Magnetic_susceptibility
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Molar_mass
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Melting_point
https://en.wikipedia.org/wiki/Sublimation_(phase_transition)
https://en.wikipedia.org/wiki/Magnetic_susceptibility
https://en.wikipedia.org/wiki/Magnetic_susceptibility
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Vm=(0.5+0.15+0.15+0.15) /4 = 0.2375 

Vf =0.05 

𝞺m = (1.2+0.4+1.05+0.940)/4 = 0.8975 

𝞺f = 0.22 

Substituting all values in equation 3 we get 𝞺= 0.22 

Also the density of graphene is 2.65 

Therefore, total density is (0.22+2.65)/2= 1.435 

From this the properties of novel polymer 

composites are found. The new Polymer composite 

can be named Polyacetophenemide. As Graphene 

and MWCNT are added its properties are also 

considered for calculation.So the calculated values 

are given in ANSYS HFSS simulation software. [5] 

4. Simulation Details and Result  

The simulations that were run and the performance 

analysis of the suggested structure are described in 

this section. A comparison section is also provided 

to demonstrate how the suggested shield material 

has improved. ANSYS HFSS was then used to 

analyse the EMI shield for the recommended work.  

The model's inputs are the mass density, 

permeability, and dielectric permittivity.  Using the 

rule of mixtures formula for the composite shield 

material, the input values are determined. Equations 

(1), (2), and (3) are used to determine the dielectric 

permittivity of the composite (Ávila et al., 2015) 

and are provided as input. S parameters were used 

to calculate the shield's distinctive performance 

values. The parameters S21 and S12 indicate the 

transmission coefficient, which is ascertained by 

the S parameter plot, while S11 and S12 represent 

the reflection coefficient. (Figure 1) [6] 

 

 
Figure 1 Model of Strip Material 

 

The following is a description of the software 

analysis's findings. A boundary box encloses the 

model of the strip material in HFSS that is 

displayed. The shield model was created using a 

4x4 cm patch with a 2 mm thickness and a 9x9x3 

cm boundary box. Figures 1 and 2 depict it. 

The characteristic performance values  

are given as input. (Figure 2,3) 

 

 
Figure 2 Model with Boundary Box 

 

 
Figure 3 Smith Chart 

 

A Smith chart is used to show the system's 

impedance as a function of frequency. Figure 4.3 

depicts it. According to the chart, the source 

impedance is located on 0.8 circles, while the shield 

resistance is located on 0.075 circles. As a result, 

the resistance and impedance are, respectively, 7.5 

and 0.8 ohm. Fillers and graphene substrate 

together hence offer good conductivity and lower 

resistance values. Because of this, the innovative 

methods mentioned above enhance the shielding's 

performance by lowering the amount of filler used, 

preserving appropriate filler dispersion, enhancing 

electrical conductivity, raising thermal stability, 

and improving connectivity. (Figure 4) [7-8] 

 

 
Figure 4 Transmission Coeffiecient Curve 
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amplitude and the incident wave's amplitude is 

shown by the transmission coefficient curve (Figure 

4.4). It measures the net transmitted power, which is 

represented by the transmission coefficient and was 

found to be 0.373 at 18.6 GHz, since S12, for which 

the input and output ports are different. Equation (4) 

is used to calculate the value of absorption, which is 

found to be 0.254 based on the values of reflectivity 

and transmission (Geetha et al., 2009).  

SA+SR+ST=1—Equation(4) [9] 

where SR stands for shield reflection, SA for shield 

absorption, and ST for shield transmission. (Figure 5) 

 

 
Figure 5 Transmission vs Concentration 

 

Plotting the transmission value vs filler concentration 

(Banerjee et al., 2020) is shown in Figure 4.5. The 

suggested material is compared to different filler 

concentrations of carbon black (CBH), exfoliated 

graphite (EG), single-walled carbon nanotubes 

(SWCNT), and multiwalled carbon nanotubes 

(MWCNT) at concentrations ranging from 0.5 to 2%. 

Plot demonstrates that the suggested material, with 

2% filler addition concentration, has the lowest 

transmission characteristics capability of 0.2. [10] 

5. Machine Learning Techniques  

Machine learning (ML) techniques have emerged as 

powerful tools in the field of electromagnetic 

interference (EMI) shielding, offering advanced 

capabilities for predicting and optimizing the 

shielding effectiveness of composite materials. A 

variety of ML algorithms—such as regression 

models, neural networks, and ensemble methods—

have been employed to decipher the complex 

relationships between material properties and EMI 

shielding performance (Chang H et al., 2021; 

Chaudhary V et al., 2023). These approaches utilize 

comprehensive datasets that include a wide range of 

composite formulations, factoring in variables like 

filler type, concentration, and dispersion 

characteristics (Kumar R et al., 2023; Lee et al., 

2020). Moreover, ML enables the optimization of 

material compositions by identifying the most 

effective combinations of components to achieve 

desired EMI shielding properties. Through iterative 

data-driven learning, these models continuously 

improve their predictive accuracy. Their capacity to 

manage large datasets and uncover intricate 

interdependencies makes ML an invaluable asset in 

developing composite materials with customized 

EMI shielding capabilities (Li X et al., 2022). 

This suggested machine learning method's primary 

contribution is as follows:  

 To enhance the optimisation of the EMI 

shielding effect, a unique Bayesian-enriched 

genetic programming (GP) handles the non-

linear parameter relationship and high-

dimensional search space complexity.  

 A unique multi-objective dominant crowding 

seagull optimisation improves prediction 

accuracy by capturing and managing the 

conflicting proportional relationship between 

each material property and other properties. 

6. Bio-Inspired Predictive Insight and 

Optimization for Emi Shielding in Hybrid 

Polymer Composites 

The prediction and optimization models for the EMI 

shielding effect of polymer composite materials, 

based on machine learning, represent a 

groundbreaking advancement in materials 

engineering. These models utilize data-driven 

algorithms to accurately predict the effectiveness of 

electromagnetic interference (EMI) shielding in 

composite materials. By incorporating key features 

such as filler concentrations, composite thickness, 

and substrate characteristics, these models elucidate 

the intricate relationships among the variables that 

affect EMI shielding. Additionally, the optimization 

capabilities inherent in machine learning allow for 

the determination of optimal material compositions, 

thereby aiding in the development of polymer 

composites with superior EMI shielding properties. 

Nevertheless, existing machine learning 

methodologies face challenges in addressing multi-

objective optimization and in capturing the complex 

nature of composites. Consequently, a bio-inspired 

strategy for predictive insight and optimization has 

been proposed to enhance the prediction and 

optimization of the EMI shielding effect in selected 

polymer composites. This approach introduces two 

innovative methods: Bayesian-enriched genetic 
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programming and multi-objective dominant 

crowding seagull optimization, which will be 

detailed in the following sections. [11-14] 

6.1. Bayesian-Enriched Genetic 

Programming 
To mitigate the challenges posed by high-

dimensional complexity, the method known as 

'Bayesian-enriched genetic programming' is 

proposed. This approach adeptly captures the non-

linear functional relationships among various 

parameters, including filler loading, matrix type, 

thickness, porosity, and the number of layers in 

polymer composite materials, through a novel 

integration of genetic programming and Bayesian 

principles. During the initialization phase, the genetic 

programming element represents each polymer 

composite structure as a dynamic tree, encoding the 

various parameters at different nodes and leaves. As 

the evolutionary process progresses, genetic 

operators such as crossover and mutation introduce 

variability, allowing the algorithm to investigate 

complex interrelations among parameters. The 

Bayesian-enriched component plays a crucial role 

during the fitness evaluation phase, where Bayesian 

techniques are employed to update the probability 

distributions linked to different parameter 

combinations. This enhancement directs the 

algorithm's attention towards promising areas of the 

parameter space, adapting dynamically as 

optimization advances. The outcome is a continuous 

evolution that optimizes polymer composite 

structures for EMI shielding while also providing 

probabilistic insights into the importance of each 

parameter, thereby offering a detailed understanding 

of the intricate interactions among filler loading, 

matrix type, thickness, porosity, and the number of 

layers in achieving improved EMI shielding 

effectiveness.This comprehensive algorithm 

combines the evolutionary strengths of genetic 

programming with the probabilistic search methods 

of Bayesian optimization, creating a strong 

framework for optimizing complex configurations of 

composite materials. The interaction between these 

elements aids in identifying optimal solutions within 

the intricate, high-dimensional parameter space, thus 

improving the efficiency and effectiveness of the 

optimization process. After this proposed method 

captures the nonlinear multifactorial characteristics 

of the material properties, it alleviates the high-

dimensional complexity, leading to the subsequent 

step of predicting and optimizing the EMI shielding 

effect of the material through the MDCS 

optimization algorithm, which will be detailed in the 

following Section. (Figure 6) 

 

 
Figure 6 Flow Chart of Bayesian-Enriched 

Genetic Programming 
 

This MDCS optimization algorithm incorporates 

Pareto dominance ranking, crowding distance 

assessment, and a novel seagull optimization phase 

to effectively manage the trade-offs and conflicting 

relationships between various material properties. 

The seagull optimization process improves the 

exploration and refinement of solutions, striving for 

a well-distributed and diverse set along the Pareto 

front. [15-18] 

6.2. Result and Discussion 

This section outlines the outcomes derived from the 

proposed machine learning model. The results 

indicate that the proposed model surpasses others 

regarding prediction accuracy and dimensional 

complexity. Additionally, the effectiveness of the 

suggested method in forecasting EMI shielding is 

further demonstrated through a comparison with 

other currently utilized machine learning models. 
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(Figure 7) 

6.3. System Requirements 

OS   :  Windows 10 Pro 

Processer  : Intel(R) Core(TM) i3-4130 

CPU 

RAM   : 8GB 

Tool   : PYTHON 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Flow Chart of MDCS Optimization 

 

6.4. Performance Analysis of the Proposed 

Model 

 

 
Figure 8 Variation of Porosity with Number 

of Layers and Thickness 

 
Figure 9 Variation of Porosity with Number 

of Layers and Thickness 

 

Figure 9 illustrates the percentage change in porosity 

in relation to the increase in the number of layers and 

thickness. As shown in Figure 7.1a, an increase in the 

number of layers correlates with a rise in porosity 

percentage, reaching approximately 73% at four 

layers. Furthermore, Figure 7.2b indicates that 

porosity percentage also rises with layer thickness, 

achieving around 62% at a thickness of 5cm. The 

suggested Bayesian-enhanced genetic programming 

effectively captures these variations and optimizes 

these values to mitigate high dimensional 

complexities.  (Figure 10) 

 

 
Figure 10 Variation of Loading With Layers and 

Porosity 

 

Figure 10 illustrates the percentage variation in 

loading relative to the number of layers and porosity. 

As depicted in Figure 7.2a, there is an inverse 

relationship between the number of layers and the 
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loading percentage, with a calculated loading 

percentage of 32% for three layers. Conversely, 

Figure 7.2b indicates a direct relationship between 

porosity and loading percentage, revealing a loading 

percentage of 70% at 80% porosity. The proposed 

MDCS optimization model effectively identifies 

these proportional variations among the composite 

material's properties, facilitating improved prediction 

and optimization. [19] 

6.5. Performance Comparison of the 

Proposed Model with Existing Models 

This section presents a comparison of the 

performance of the proposed machine learning-based 

EMI shielding optimization strategy against other 

existing models, with the results detailed below. The 

proposed model is evaluated alongside several 

established machine learning techniques, including 

KRR, RFR, ETR, GBT, and WAE (Shi M, et al., 

2022). (Figure 11,12) [20-22] 

 

 
Figure 11 Comparison of MAE 

 

 
Figure 12 Comparison of Prediction Accuracy 

 
Figure 12 depicts a comparison of MAE (Mean 

Absolute Error) of the proposed model with that of 

the existing methods. This shows that the proposed 

method achieves lower MAE with the multi-

objective dominant crowding seagull optimization 

when compared to other methods. Figure 7.4 shows 

a comparison of prediction accuracy of proposed 

model with different ML methods. Proposed 

model’s accuracy is much better compared to other 

models. [23] 

Conclusion  
The EMI shield material in this work was developed 

using polymer matrix materials. The material was 

subsequently analysed and its various properties 

were identified using ANSYS-HFSS software. To 

improve the performance of the EMI shield, 

Graphene and conductive polymers were added to 

the selected materials. This was then simulated 

using HFSS software. Plots and charts produced by 

the analysis were used to determine the S-parameter 

characteristics for absorption, reflection, and 

transmission. Thus, it can be said that at a high 

frequency of 20 Hz, the shield material has good 

SE_T values of 0.373 dB. Lastly, a comparison of 

the suggested model with varying filler content and 

material reinforcement revealed a 30.75% increase 

in absorption. This research presents a promising 

and comprehensive approach to address the 

challenges in predicting and optimizing EMI 

shielding in the selected hybrid polymer composite. 

The "Bayesian-enriched genetic programming" 

method integrates genetic programming with 

Bayesian principles to navigate the high-

dimensional and nonlinear parameter space of 

polymer composites. Then, the "multi-objective 

dominant crowding seagull optimization" approach 

integrates Pareto dominance ranking, crowding 

distance calculation, and seagull optimization and 

effectively balances conflicting material properties 

by preserving non-dominated solutions on the 

Pareto front, encouraging a diverse spread of 

solutions, and leveraging seagull optimization for 

further refinement of EMI shielding performance. 

With an outstanding prediction accuracy of 98.7%, 

the model surpasses the prevailing models such as 

KRR, ETR, RFR, GBT, and WAE. Additionally, it 

demonstrates faster training and prediction times of 

19 seconds and 6 seconds, respectively than other 

existing methods. [24-25] 
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