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1. Introduction 
The AI-Powered Alumni Portal: Connect, Learn, 

Global economies and food security still rely 

heavily on agriculture, but traditional farming 

methods are facing more and more difficulties as a 

result of resource shortages, climatic variability, 

and the growing need for sustainable practices. A 

crucial development in this regard is the use of 

smart agriculture, which combines cutting-edge 

technology like sensor networks, artificial 

intelligence, and unmanned aerial vehicles (UAVs) 

to improve crop monitoring, disease diagnosis, and 

farm management in general [1]. A key component 

of the smart agriculture trend is the incorporation of 

drone technology into farming operations. By 

leveraging drones, farmers and researchers can 

obtain comprehensive and accurate datasets that 

form the foundation for data-driven decision-

making [2]. This capability is particularly important 
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Detection. 

Agricultural health monitoring systems are critical for guaranteeing food 

security and increasing crop yields by detecting plant diseases in a timely and 

accurate manner. Traditional monitoring approaches frequently rely on 

manual inspections, which are time-consuming, labour-intensive, and 

susceptible to human mistake, thereby delaying essential solutions. In contrast, 

modern monitoring systems leverage advanced technologies such as drones, 

sensors, and deep learning algorithms to continuously track crop health in real-

time, enabling precise and targeted interventions. The main goal of this work 

is to integrating advanced drone technology with deep learning algorithms for 

real-time monitoring and disease classification in paddy and coconut trees. The 

drone, assembled using high-performance components, it facilitates efficient 

and high-resolution imaging under real-world agricultural conditions. The 

collected visual data is subsequently processed using deep learning techniques 

to identify and classify diseases affecting paddy and coconut trees. In 

particular, Residual Network (ResNet) architecture was employed for disease 

prediction and its performance was benchmarked against a conventional CNN 

model. Experimental results demonstrate that ResNet outperforms the CNN 

model, achieving higher accuracy and robustness in disease detection. 
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for monitoring crops like paddy and coconut trees, 

where early and precise disease detection can 

significantly reduce yield losses and improve 

overall productivity [3]. One of the pivotal 

advancements in smart agriculture is the use of 

drones for real-time data collection. Drones provide 

a unique advantage in agricultural monitoring due 

to their ability to rapidly survey large areas and 

capture high-resolution images, which are essential 

for assessing crop health. In particular, drones have 

shown significant promise in collecting detailed 

data from paddy fields and coconut trees. For paddy 

fields, drone-acquired images of paddy leaves 

enable the early detection of diseases and stress 

factors, facilitating timely intervention and precise 

application of treatments. Similarly, in coconut 

plantations, drones can efficiently gather data on the 

health of the trees, identifying potential issues such 

as nutrient deficiencies or disease symptoms that 

might not be immediately apparent through 

traditional ground-level inspections. Precision 

agriculture, sometimes referred to as smart 

agriculture, incorporates cutting-edge information 

and communication technologies into farming 

methods. Farmers may make data-driven decisions, 

maximise resource use, and tackle particular issues 

in their farms thanks to this integration. Sensor 

networks, geographic information systems (GIS), 

satellite imaging, and unmanned aerial vehicles 

(UAVs) or drones are essential elements of smart 

agriculture that enable real-time crop health and 

environmental condition monitoring. Maximising 

agricultural productivity while reducing 

environmental impact is the driving force behind 

smart agriculture [4]. Conventional monitoring 

techniques are frequently time-consuming, labour-

intensive, and prone to human error, which can 

result in inefficient resource use and delayed illness 

identification. Smart agriculture systems, on the 

other hand, provide real-time data collecting and 

analysis, allowing for prompt interventions that can 

reduce crop losses and encourage environmentally 

friendly farming methods. For example, UAVs with 

high-resolution cameras and sensors can swiftly 

survey wide regions and provide comprehensive 

data on plant health that would otherwise 

necessitate a lot of manual labour [5]. 

2. Literature Review 

Chouhan et al. (2021) identified the lesion in a 

section of biofuel plants using the simple linear 

iterative clustering (SLIC) method. The SLIC 

algorithm performs through in terms of colour and 

pixel intensity after first choosing a range of "n" 

groups [6]. The subsequent cluster section of the 

overlapping pixel region is merged with each pixel. 

The super pixel clustering technique leaves few 

pixels, making pixel relabelling a difficult 

operation. Citrus leaf diseases were categorised by 

Ali et al. (2017) using the Delta-E colour difference 

technique. The Delta-E algorithm uses dependent 

illumination and colour differences to identify 

diseased regions; changes in picture lighting also 

have an impact on the accuracy of disease 

diagnosis. Zhang et al. (2017) and Zhang & Wang 

(2016) used sparse representation and Singular 

Value Decomposition (SVD) for extract lesion 

features from infected cucumber leaves. Each row 

in each column of the image contains a low-level 

matrix, which contains a lot of redundant 

information. Key attribute of SVD is its relationship 

with matrix rank and its ability to approximate a 

matrix of a given rank [7]. Digital images are 

usually represented by a short-distance matrix, is 

described by the sum of a relatively small number 

of original images. With this feature, SVD extracts 

structural information from leaf lesions. The sparse 

representation of image structures such as edges, 

corners, and textures requires the use of a large 

number of vector vocabularies. The logarithmic 

spectrum of the color histogram and the shape of the 

lesion feature are extracted from the cucumber leaf 

diseases, which can be displayed in a sparse 

representation for the classification of leaf diseases 

[8]. The sparse view model is very useful for images 

that change their appearance and require more 

memory because the array contains more zeros. 

Dhingra et al. (2018) use the Subtractive Pixel 

Adjacency Matrix (SPAM) method for extracting 

features from apple leaf for disease identification; 

where the image usually does not contain noise; 

identify the limited interdependence between the 

differences in related facial primordial, and Markov 

chains is used for extracting features from the leaf 

image. The Markov chain model extracts high-

order features from the damage of apple tree leaves 

[9]. A total of 686 traits were extracted, and the 

Exponential Spider Monkey Optimization 

Algorithm (ESMO) was used for selecting 

threshold traits and SVM classifiers were used to 

classify apple leaf diseases. Li et al. (2020) 
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proposed a Convolutional Neural Network (CNN) 

for classifying the lesion of the infected leaf, as 

these networks automatically extracts the internal 

information from images such as edges and texture 

information, thereby increases the size of the deep 

convolutional neural network for extracting more 

features from the diseased leaf parts [10]. Terence 

et al. (2020) discussed different Internet of Things 

(IoT) technologies in PA conducted via sensors, 

gateways, communication system, user interface 

and experiment type, type of plant, type of disease, 

concludes with advantages, and disadvantages. IoT 

based agriculture automation does so by altering 

agriculture sector from static and manual to 

dynamic and intelligent and brings more production 

with less human efforts [11]. 

3. System Methodology 

This work considers different smart agriculture 

system. Figure 1 depicts the Overall workflow and 

figure 2 illustrates the system methodology.  

 

 

 
Figure 1 Overall Workflow 

 

 
Figure 2 System Methodology 
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3.1. Data Collection 

This project harvested agriculture data through two 

approaches, namely Soccer Drone–based Data 

Collection and Ground Station Components-based 

Data Collection. Figure 3 illustrates the 

mechanisms of data harvesting. 

 

 
Figure 3 Data Collection Methods 

 

3.1.1. Soccer Drone-based Data Collection  

This work designed soccer drone for real time 

agricultural monitoring and data collection, which 

is a specialized unmanned aerial vehicle (UAV) 

engineered for precision tasks. It is designed to 

capture high-resolution images of both coconut 

trees and paddy leaves, enabling comprehensive 

data collection for agricultural monitoring. 

Equipped with a 5MP camera module and advanced 

navigation systems, the drone can fly over 

expansive fields and navigate between crops with 

precision, ensuring detailed and accurate imagery 

even in challenging terrains. This real-time data 

collection facilitates early detection of diseases and 

stress factors in both coconut trees and paddy crops, 

supporting timely interventions and enhancing crop 

management practices. By integrating these 

capabilities, the soccer drone plays a pivotal role in 

advancing precision agriculture and promoting 

sustainable farming techniques. This work designed 

soccer drone using integrates high-performance 

components to ensure agile flight and accurate data 

acquisition in diverse field conditions. 

1. EMAX ECOII Series 2306 1700KV Motor 

It is a pivotal component in the soccer drone, 

delivering the high power and stability required for 

agile flight during agricultural monitoring missions. 

Its high KV rating enables rapid rotor speeds, which 

are crucial for maneuvering through complex 

environments and capturing high-resolution 

imagery in real-time. Designed for reliability and 

efficient thermal management, this motor supports 

prolonged flight durations, ensuring continuous 

data collection over expansive agricultural fields. 

Overall, the robust performance of the EMAX 

ECOII Series 2306 1700KV Motor significantly 

enhances the drone’s capability to perform precise 

aerial surveillance for tasks such as disease 

detection in paddy and coconut trees. 

2. ESC & Flight Controller: Speedybee F405 

V4 BLS Stack 60A 

It serving as both the ESC and flight controller, is a 

critical component in the soccer drone, ensuring 

precise control and stability during flight. This 

integrated unit manages the power distribution to 

the motors and executes complex flight algorithms, 

enabling rapid response to dynamic field 

conditions. Its high-performance design allows for 

smooth, stable flight, essential for capturing high-

resolution images during data collection missions 

over agricultural fields. Moreover, the advanced 

control capabilities of the Speedybee F405 V4 

ensure accurate maneuvering and robust safety 

measures, making it indispensable for maintaining 

optimal drone performance in precision agriculture 

applications. 

3. 5-inch Carbon Fiber Drone Frame (160g) 

The 5-inch Carbon Fiber Drone Frame (160g) plays 

a crucial role in the soccer drone by providing a 

robust yet lightweight structure that enhances both 

durability and flight efficiency. Its carbon fiber 

construction ensures that the drone remains resilient 

against environmental stresses and minor impacts 

while keeping the overall weight minimal for 

extended flight times and improved 

maneuverability. This frame's compact design 

facilitates agile movement and precise positioning, 

essential for capturing high-resolution images 

during agricultural data collection missions. 

Additionally, the high strength-to-weight ratio of 

the carbon fiber material contributes to the overall 

stability and performance of the drone, making it 

well-suited for the demanding requirements of 

precision agriculture. 

4. Fly Sky i6X  

It plays a pivotal role in the soccer drone by 

ensuring reliable, real-time communication 

between the operator and the drone. This control 

system facilitates precise command and feedback 

loops, enabling accurate navigation and 
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maneuverability across complex agricultural 

terrains. Its robust transmission capabilities help 

maintain a stable link, even in environments with 

potential signal interference, which is critical for 

safe and efficient drone operation during data 

collection missions. Overall, the Fly Sky i6X 

system is essential for achieving responsive control 

and maintaining the operational integrity of the 

soccer drone in precision agriculture applications. 

5. Orange HD Tri-Blade 5045 Propellers 

The Orange HD tri-blade 5045 propellers are 

integral to the soccer drone's propulsion system, 

providing the necessary thrust and aerodynamic 

efficiency for stable flight. Their tri-blade design 

enhances lift and ensures smooth rotational balance, 

which is crucial for maintaining maneuverability 

and responsiveness in dynamic agricultural 

environments. These propellers are engineered for 

optimal performance, contributing to extended 

flight times and the precise handling needed for 

high-resolution data collection missions. Overall, 

their robust design and efficient operation play a 

key role in supporting the drone's ability to navigate 

and operate effectively in precision agriculture 

applications. 

6. Bonka 22.2V 5200mAh 35C 6S Lithium 

Polymer Battery Pack 

It is a critical component for the soccer drone, 

providing a robust and reliable power source that 

ensures sustained high-performance operations 

during agricultural data collection missions. Its high 

voltage and capacity allow the drone to achieve 

extended flight times and maintain the energy 

demands of rapid maneuvers and high-resolution 

imaging, while the 35C discharge rating guarantees 

efficient energy delivery even during peak power 

draws. This reliable power management minimizes 

interruptions and ensures the drone's stability and 

responsiveness in dynamic field conditions, making 

it indispensable for precision agriculture 

applications where consistent and prolonged 

operation is essential. 

7. Raspberry Pi  

This work used Raspberry Pi 4 Model B serves as a 

powerful onboard computing platform for the 

soccer drone, enabling real-time processing and 

data management during agricultural missions. Its 

robust processing capabilities support complex 

algorithms and deep learning models necessary for 

tasks such as disease detection and classification in 

paddy and coconut trees. In addition, the Raspberry 

Pi facilitates seamless integration with peripheral 

devices, including the camera module, for high-

resolution imaging and efficient data transmission. 

This compact yet versatile system is essential for 

executing advanced computational tasks on-the-fly, 

thereby enhancing the drone's overall functionality 

and operational efficiency in precision agriculture 

applications. 

8. Raspberry Pi 5MP Camera Module 

The Raspberry Pi 5MP Camera Module is vital for 

the soccer drone's ability to capture high-quality, 

detailed imagery during agricultural monitoring 

missions. Its 5-megapixel resolution provides the 

clarity needed to identify subtle signs of disease or 

stress in crops like paddy and coconut trees, 

facilitating accurate analysis and early intervention. 

Lightweight and compact, the camera module 

integrates seamlessly with the Raspberry Pi 4 

Model B, enabling real-time data processing and 

efficient transmission of images to ground stations 

or cloud servers. This synergy between the camera 

module and onboard computing enhances the 

drone's overall precision and effectiveness in 

supporting smart agriculture initiatives. 

3.1.2. Ground Station-based Data 

Collection 

Figure 4 represents the Ground Station-based Data 

Collection. 

 

 

 
Figure 4 Ground Station-Based Data Collection 
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The ground station components play a vital role in 

the comprehensive monitoring and data collection 

for coconut trees and paddy leaves by integrating a 

suite of advanced sensors and modules. These 

components continuously gather critical 

environmental and soil data, which provide a 

detailed picture of the microclimatic and agronomic 

conditions affecting crop health. This real-time data 

acquisition enables farmers to precisely monitor 

and analyze the growing environment, facilitating 

timely and targeted interventions for disease 

prevention and resource optimization. Ultimately, 

the integration of these ground station components 

supports sustainable farming practices and 

enhances the productivity of both coconut and 

paddy cultivation. 

1. Arduino Uno R4 WiFi – 1 

The Arduino Uno R4 WiFi serves as a crucial 

component in the ground station for agricultural 

monitoring, acting as a versatile interface between 

various sensors and the central control system. Its 

integrated WiFi connectivity enables seamless 

wireless communication, facilitating real-time data 

transfer from field devices and drones to the ground 

station. This connectivity is essential for monitoring 

environmental parameters, managing telemetry 

data, and executing remote commands during 

precision agriculture operations. Moreover, the 

Arduino Uno R4 WiFi's programmable capabilities 

allow for the customization of data acquisition and 

processing tasks, thereby enhancing the overall 

efficiency and responsiveness of agricultural 

monitoring systems. 

2. DHT11  

The DHT11 sensor is an essential component of the 

ground station in agricultural monitoring systems, 

providing accurate and real-time measurements of 

environmental temperature and humidity. This data 

is critical for assessing microclimatic conditions, 

which can directly influence crop health and 

productivity. By integrating the DHT11 sensor, the 

ground station can continuously monitor weather-

related parameters, enabling farmers and 

agronomists to make informed decisions about 

irrigation, ventilation, and other vital agronomic 

practices. Its ease of use and reliable performance 

make the DHT11 an indispensable tool for 

maintaining optimal growing conditions and 

ensuring sustainable agricultural management. 

3. pH Sensor  

The pH sensor is a vital component in ground 

station systems for agriculture, providing accurate 

and continuous measurements of soil acidity or 

alkalinity. This data is crucial for assessing soil 

health and guiding agronomic decisions, such as the 

application of fertilizers or lime to optimize nutrient 

availability and promote robust plant growth. By 

integrating real-time pH monitoring into the 

agricultural management system, farmers can better 

tailor their soil treatment strategies, ultimately 

improving crop yield and ensuring sustainable 

farming practices. 

4. Flow Sensor YF S201  

It is a crucial component in the ground station setup 

for agricultural irrigation management, as it 

provides precise measurements of water flow speed 

and volume. By delivering real-time data on water 

distribution, this sensor enables accurate 

monitoring and control of irrigation systems, 

ensuring that crops receive the optimal amount of 

water. Its ability to detect variations in flow allows 

farmers to quickly identify and address issues such 

as leaks or blockages, thereby enhancing water 

efficiency and reducing waste. Ultimately, the YF 

S201 supports data-driven decision-making in 

irrigation practices, promoting sustainable 

agriculture and improved crop productivity. 

5. GY - 68 Barometer  
The GY-68 Barometer is an integral component of 

ground station systems in agriculture, providing 

essential measurements of atmospheric pressure 

and altitude. This sensor plays a pivotal role in 

monitoring weather conditions that directly impact 

crop health and field operations. By delivering real-

time data on environmental pressure variations, it 

helps predict weather changes and supports the 

fine-tuning of irrigation and fertilization strategies 

based on altitude and atmospheric conditions. 

Ultimately, the GY-68 Barometer enhances the 

decision-making process in precision agriculture, 

contributing to optimized resource management 

and improved crop productivity. 

6. DS18B20 Temperature Sensor  

This sensor is offering precise measurements of soil 

temperature that are critical for monitoring and 

managing crop conditions. Its digital output and 

high accuracy allow for real-time tracking of 

temperature fluctuations in the soil, which directly 

impact seed germination, nutrient uptake, and 

overall plant health. By integrating this sensor into 
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the agricultural monitoring system, farmers can 

make informed decisions regarding irrigation, 

fertilization, and other management practices to 

optimize growth conditions. Ultimately, the 

DS18B20 contributes to enhanced crop 

productivity and sustainable agricultural practices 

through its reliable and continuous soil temperature 

monitoring. 

7. Resistive Soil Moisture Sensor  

The Resistive Soil Moisture Sensor Module is an 

essential element in farm ground station systems, as 

it gives instant measurement of soil moisture levels, 

which are important for irrigating under optimal 

conditions. It helps farmers measure accurately the 

water level in the soil and hence identify the exact 

time and quantity of water to be given, avoiding 

both under-irrigation and over-irrigation. Its ease of 

integration with other monitoring devices and cost-

effective nature make it an indispensable tool in 

precision agriculture. Ultimately, the sensor's 

continuous monitoring capability supports efficient 

water management, enhances crop health, and 

contributes to sustainable farming practices. 

3.2. ResNet-18 

This work proposed ResNet-18 for different 

agriculture task, such as NDVI Estimation, Leaf 

Disease Classification, and Visual Leakage and 

Blockage Detection. The ResNet-18 architecture is 

a deep residual network designed to reduce the 

vanishing gradient problem, thereby enabling 

efficient training of deeper neural networks. The 

primary innovation in ResNet (Residual Networks) 

is the implementation of residual connections that 

bypass one or more layers, allowing deeper models 

to be trained more efficiently (Figure 5). 

 

 

 
Figure 5 ResNet18 

 

1. Input Layer 

 Input Size: The input image typically has a 

size of 224×224×3224 \times 224 \times 

3224×224×3 (Height, Width, Channels). 

2. Initial Convolutional Layer 

 Convolution: 7x7 filter with a stride of 2, 

followed by a Batch Normalization layer 

and ReLU activation. 

 Output: 112×112×64112 \times 112 \times 

64112×112×64 

 Max Pooling: 3x3 max pooling with stride 

2. 

3. Residual Blocks (4 stages) 

The network is divided into four stages. Each stage 

consists of Residual Blocks. 

Stage 1 (64 filters): 

 2 Residual Blocks with 64 filters. 

Each block has: 

 3x3 Convolution with padding, followed by 

Batch Normalization and ReLU. 

 Another 3x3 Convolution with Batch 

Normalization. 

 Shortcut connection (identity mapping) that 

adds the input to the output of the block. 

Stage 2 (128 filters): 

 2 Residual Blocks with 128 filters. 

 The first residual block of this stage uses a 

convolution with stride 2 to downsample the 

feature map. 

 The blocks are similar to the previous stage 

but with increased filter sizes. 

Stage 3 (256 filters): 

 2 Residual Blocks with 256 filters. 

 The first residual block of this stage also 

uses a convolution with stride 2 to reduce 

the spatial dimensions. 

Stage 4 (512 filters): 

 2 Residual Blocks with 512 filters. 

 Similar to previous stages, with stride 2 in 

the first block to downsample. 
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4. Global Average Pooling 

After passing through the 4 stages, a Global 

Average Pooling layer is applied to the output. This 

reduces each feature map to a single value by 

averaging over the spatial dimensions. 

5. Fully Connected (FC) Layer 

 A FC layer is applied after global average 

pooling. 

 This layer has 1000 output units (for 1000 

classes in ImageNet classification). 

 Softmax activation is typically applied to 

generate class probabilities. 

6. Output 

 The final output is a vector of size 1000 (for 

ImageNet classification) 

3.3. Normalized Difference Vegetation Index 

(NDVI) Estimation 

NDVI estimation is a vital technique for assessing 

the health and vigor of paddy, coconut tree, and 

tomato crops by quantifying the level of healthy 

vegetation present. This process involves capturing 

high-resolution images of the crops using 

specialized sensors or drones and analyzing the 

spectral reflectance in the red and near-infrared 

bands to compute NDVI values. In practical 

applications, these NDVI values serve as a 

quantitative measure of chlorophyll content, which 

directly correlates with plant health, allowing for 

the detection of stress, nutrient deficiencies, or 

disease. By integrating NDVI estimation with deep 

learning models such as ResNet-18, the system can 

efficiently classify crop conditions into categories 

like chlorophyll A and chlorophyll B, thereby 

enabling precise, real-time monitoring and 

informed decision-making in crop management. In 

this work, ResNet-18 is employed for NDVI 

estimation on a real-time dataset collected from 

paddy, coconut tree, and tomato crops, with each 

crop dataset consisting of 1000 samples for each of 

the two classes—chlorophyll A (dark green leaves) 

and chlorophyll B (light green and yellow leaves). 

The architecture of ResNet-18, characterized by its 

18-layer depth and the use of residual connections, 

efficiently extracts both low-level and high-level 

features from the images, capturing subtle 

variations in color and texture that are critical for 

distinguishing between the two chlorophyll classes. 

During training, the model learns to associate 

specific patterns in the images with corresponding 

NDVI values, which serve as a proxy for vegetation 

health. This deep feature extraction and learning 

process enables the network to accurately classify 

the images, while the residual connections help 

prevent gradient vanishing, ensuring robust 

performance even with a relatively compact 

architecture. The successful application of ResNet-

18 in this context demonstrates its effectiveness in 

real-time agricultural monitoring and NDVI 

estimation, facilitating precise and timely decision-

making in crop management. 

3.4. Leaf Disease Classification  

This work leverages the ResNet-18 deep CNN 

architecture for the task of leaf disease detection 

across three major crops: paddy, coconut trees, and 

tomatoes. The study utilizes a comprehensive, real-

time dataset where each crop category comprises 14 

distinct classes of leaf conditions, with 1,000 

samples per class, ensuring a robust representation 

of both healthy and diseased states. Specifically, for 

paddy crops, the dataset includes disease classes 

such as Blight, Brown Spot, and Leaf Smut; for 

coconut trees, the diseases considered are 

Yellowing, Flaccidity, Drying, and infestations 

caused by Worms & Caterpillars; while for 

tomatoes, the focus is on Blight, Septoria, Yellow 

Leaf Curl, and Target Spot. The ResNet-18 

architecture, comprising 18 layers and skip 

connections, effectively addresses the vanishing 

gradient issue, enabling the network to acquire 

profound, discriminative properties that 

differentiate small variations in leaf colour, texture, 

and shape suggestive of disease. This powerful 

feature extraction capacity, coupled with a balanced 

dataset, guarantees excellent accuracy in the real-

time detection and classification of leaf diseases, 

facilitating prompt interventions and enhanced crop 

management in precision agriculture. The ResNet-

18 is strategic due to its relatively shallow 

architecture compared to deeper networks, which 

makes it computationally efficient without 

significantly compromising accuracy. The 

network's design, characterized by residual 

connections, helps mitigate the vanishing gradient 

problem and enables the model to learn deep 

features effectively. These features are critical for 

distinguishing subtle differences in leaf texture, 

color, and patterns that indicate the presence and 

type of disease. During the training phase, the 

model learns to map the complex visual patterns 

from the high-resolution images to the 
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corresponding disease classes through supervised 

learning. With 1,000 samples per class, the model 

is provided with a sufficiently large and diverse 

dataset that aids in generalizing well to new, unseen 

images. The real-time aspect of this work implies 

that the system is designed not only for high 

accuracy but also for prompt decision-making, 

which is essential in precision agriculture where 

timely interventions can prevent the spread of 

disease and minimize crop losses. By combining 

efficient feature extraction through ResNet-18 with 

a well-structured dataset covering a broad spectrum 

of leaf diseases, this work aims to deliver a robust 

solution for automated disease detection that can be 

integrated into smart agriculture systems, ultimately 

supporting enhanced crop management and 

sustainable farming practices. 

3.5. Visual Leakage and Blockage Detection 

Visual leakage and blockage detection in irrigation 

systems is critical for maintaining efficient water 

distribution and ensuring the optimal performance 

of agricultural operations. By integrating advanced 

imaging technologies with deep learning models, 

these systems can automatically identify and 

classify anomalies such as pipe leakage, sprinkler 

leakage, or blockages that disrupt water flow. High-

resolution images of the irrigation infrastructure are 

continuously captured and processed to detect 

subtle signs of wear, damage, or malfunction, 

enabling the system to promptly trigger 

maintenance alerts. This automated approach not 

only minimizes water wastage and reduces repair 

costs, ultimately enhancing crop health and overall 

productivity. This work used ResNet-18 approach 

for detecting visual leakage and blockage in 

irrigation systems. This work focuses on three 

agricultural environments—paddy fields, coconut 

tree plantations, and tomato farms—each 

represented by a real-time dataset that categorizes 

irrigation conditions into three classes: pipe 

leakage, sprinkler leakage, and perfect irrigation. 

For each of these classes, 104 samples are collected, 

providing a balanced dataset that captures the subtle 

visual distinctions associated with each irrigation 

condition. ResNet-18's architecture, with its 18 

layers and skip connections, is specifically 

appropriate for this assignment since it keeps the 

vanishing gradient problem under control, enabling 

the network to learn deep, discriminative features 

even from a relatively small dataset. The remaining 

connections in the network enable the learning of 

both low-level and high-level features, which are 

essential for recognizing the subtle visual cues that 

distinguish between pipe leakage, sprinkler 

leakage, and well-working irrigation systems. As 

the model trains, it learns to map certain patterns in 

the images captured like water dispersion 

anomalies, discolorations, or structural 

deformations—to the respective class labels. The 

integration of this deep learning approach into 

irrigation management systems offers significant 

benefits for precision agriculture (Table 1 & 2). By 

enabling real-time detection of leaks and blockages, 

the system can trigger timely maintenance 

interventions, thereby reducing water wastage and 

preventing potential crop damage. Overall, the 

deployment of ResNet-18 in this context 

demonstrates a promising pathway for enhancing 

the efficiency and reliability of irrigation systems, 

ultimately supporting sustainable farming practices 

and improved crop productivity (Figure 6 to 12). 

4. Experimental Results 

 

 
Figure 6 ResNet 18 Confusion Matrix for 

Visual Leakage 

 

 
Figure 7 ResNet 18 Confusion matrix for 

Soil Prediction 
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Figure 8 ResNet 18 Confusion Matrix for 

Leaf Disease Prediction 

 

Table 1 Performance Analysis for ML 

Models 

 
 

Table 2 Performance Analysis Using 

ResNet18 

 
 

 
Figure 9 Soccer Drone View 1 

 
Figure 10 Soccer Drone View 2 

 

 
Figure 11 Soccer Drone View 3 

 

 
Figure 12 Ground-Based Data Collection 

 
Conclusion  
In conclusion, this work demonstrates the 

significant potential of integrating advanced drone 

technology with deep learning algorithms to 

revolutionize agricultural health monitoring. By 

leveraging high-performance components and 

innovative data acquisition techniques, the 

proposed system facilitates real-time, high-

resolution imaging of paddy and coconut trees, 

enabling precise disease detection and 

classification. The application of the Residual 
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Network (ResNet) architecture has proven to be 

particularly effective, outperforming conventional 

CNN models in terms of accuracy and robustness. 

This proactive approach not only minimizes crop 

losses through timely interventions but also 

supports sustainable farming practices, ultimately 

contributing to enhanced food security and 

agricultural productivity. 
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