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1. Introduction

Thanks to the popularity of big data and the 

amazing performance of modern machine learning 

(ML) models, the requirements of distributed 

machine learning (DML) infrastructures cannot be 

ignored anymore [1][2][3]. They allow for training 

across multiple nodes in parallel, which 

significantly decreases training times and supports 

the scaling of modern models [4]. DML as a basis 

has been penetrated based on cloud-native AI 

systems as increasingly more practitioners adopted 
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Distributed machine learning (DML) systems are instrumental to efficiently 

train large models at scale, especially at large data scales and leveraging 

smarter automation. However, traditional DML platforms work quite bad in 

heterogeneous cloud environments in that the computing resources on the 

cloud are of various structure, scale and speed. This paper explores possible 

approaches for scaling and optimizing distributed machine learning 

frameworks to be able to run on various infrastructures. To address this 

challenge, we present a strategic approach that combines adaptive resource 

scheduling, dynamic workload balancing, and topology-aware 

communication does it to improve the performance of DML operations in 

multi-cloud and hybrid deployments. The architecture enables fine-grained 

management of compute, memory and data movement thanks to smart 

orchestration layers and containerized infrastructures including Kubernetes 

and Docker. Mechanisms are included at the system level, such as 

hardwareconscious algorithms, fault tolerant checkpointing, and 

asynchronous gradient updates to reduce latency and improve resource 

utilization. We further benchmark different DML frameworks, such as 

parameter server model and AllReduce method, in diverse complex 

environments, including the strong heterogeneous ones. Our experimental 

results demonstrate that: (1) infrastructure-aware scheduling susceptibility 

and adaptive parallelism can reduce time to train by up to 45%—without 

compromising model accuracy or system reliability. Finally, overall this work 

represents a strong foundation for enhancing distributed machine learning 

across heterogeneous clouds and offers key takeaways for those who are 

looking to scale AI solutions in a cost-effective manner. It also shines a light 

on infrastructure heterogeneity as both a barrier and a positive opportunity 

in the future of cloud-native machine learning. 
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cloud infrastructure [5]. However, rolling out and 

tuning DML infrastructures on heterogeneous 

cloud environments—where resources vary based 

on architecture, performance, and configuration—

remains challenging [6]. This heterogeneity is 

caused by differences in CPUGPU models, 

memory sizes, storage hierarchies, and network 

bandwidths. Adoption of public, private, and 

hybrid cloud implementation further complicates 

deployment by offering fluctuating resource 

availability and virtualized deployment [7]. These 

differences can lead to load imbalance, uneven 

utilization of resources, and communication 

congestion, which, in turn, decreases the efficiency 

and scalability of ML workloads [8][9]. To address 

these challenges, DML should be delivered in a 

way that recognizes infrastructure variety, and in a 

dynamic manner that can reconfigure to new 

contexts. Promising work includes adaptive 

workload scheduling [10], container orchestration 

via tools like Kubernetes [11], topology-aware 

communication protocols [8] [12], and hardware-

offloaded processing supported by platforms like 

Azure, AWS, or other service providers 

[13][14][15]. In this paper, we investigate the 

architectural and algorithmic requirements for the 

optimization of DML in the heterogeneous cloud. 

This should increase throughput in training, while 

keeping model accuracy high and minimizing 

operational costs – all while laying the groundwork 

for more cost-effective and reliable AI deployment 

in advanced, real-world cloud environments. We 

refer to a heterogeneous cloud environment as one 

consisting of heterogeneous computational 

resources—everything from CPU-optimized 

virtual machines to GPU and TPU-enabled 

instances—within or between cloud providers. In 

contrast to multi-cloud, which prioritizes provider 

heterogeneity, or hybrid cloud, which connects on-

premises and cloud infrastructure, our interest is in 

the management and optimization of training 

across multiple compute types to satisfy scalability 

and performance requirements of distributed 

machine learning workloads. (Table 1) 

2. Literature Review

 

Table 1 Summary of Key Research in DML Frameworks in Heterogenous Cloud Environments 
Title Key Findings Reference 

Large Scale Distributed Deep 
Networks 

Introduced parameter 
servers; showed scalability 

in large DNNs 

Dean, Jeff, et al. “Large Scale 
Distributed Deep Networks.” 

Advances in Neural Information 
Processing Systems, 2012. 

Scaling Distributed Machine 
Learning with the Parameter 

Server 

Enabled efficient scaling on 
heterogeneous nodes 

Li, Mu, et al. “Scaling Distributed 
Machine Learning with the Parameter 

Server.” OSDI, 2014. 

TensorFlow: A System for 
Large-Scale Machine Learning 

Demonstrated portability, 
flexibility, and performance 

across hardware 

Abadi, Martín, et al. “TensorFlow: A 
System for Large-Scale Machine 

Learning.” OSDI, 2016. 

MXNet: A Flexible and 
Efficient Machine Learning 
Library for Heterogeneous 

Distributed Systems 

Supported dynamic 
computation graphs and 

hybrid backend 

Chen, Tianqi, et al. “MXNet: A 
Flexible and Efficient Machine 

Learning Library.” arXiv preprint 
arXiv:1512.01274, 2015. 

Edge Computing: Vision and 
Challenges 

Suggested edge as a solution 
to heterogeneity bottlenecks 

Shi, Weisong, et al. “Edge 
Computing: Vision and Challenges.” 

IEEE Internet of Things Journal, 
2016. 

A Survey on Resource 
Management in Edge and Cloud 

Computing 

Emphasized dynamic 
scheduling for 

heterogeneous nodes 

Zhang, Chuan, et al. “A Survey on 
Resource Management in Edge and 

Cloud Computing.” Journal of 
Systems Architecture, 2020. 



Devashish Ghanshyambhai Patel et al                                                                                                2025, Vol. 07, Issue 06 June 

   

International Research Journal on Advanced Science Hub (IRJASH) 597 

 

Accurate, Large Minibatch 
SGD: Training ImageNet in 1 

Hour 

Showed large minibatches 
can maintain accuracy with 

correct tuning 

Goyal, Priya, et al. “Accurate, Large 
Minibatch SGD.” arXiv preprint 

arXiv:1706.02677, 2017. 

Topology-Aware Data 
Parallelism for DML 

Reduced communication 
overhead and improved 

training speed 

Cui, Hao, et al. “Topology-Aware 
Data Parallelism.” IEEE Transactions 

on Cloud Computing, 2021. 

Apache Spark: A Unified 
Engine for Big Data Processing 

Demonstrated Spark’s 
efficiency in distributed 

learning workflows 

Zaharia, Matei, et al. “Apache 
Spark.” Communications of the 

ACM, 2016. 

3. Proposed Theoritical Model for Dml 

Frameworks in Heterogenous Cloud 

Environments 

The proposed theory to improve DML systems in 

multicloud environments offers an organized and 

adaptable way for AI to be deployed scalably. This 

chapter begins by explaining what the machine 

learning objectives are and preparing optimised 

datasets for parallel processing. The model focuses 

on teaching how to identify and use combinations of 

cloud resources (like CPUs, GPUs, or different 

memory models) across hybrid or multicloud 

environments. Technology such as Kubernetes are 

used for the effective coordination of model and data 

distribution. An optimal DML is determined based 

on the infrastructure between the parameter server 

model, All Reduce and a hybrid. Dynamic load 

scheduling is used for the purpose of the optimal use 

of resources to respond to variations in resource 

availability. We continue to parallel train in a 

hardware-aware manner for computational 

efficiency. It includes real-time monitoring, 

checkpointing, and fault tolerance for reliability. 

Models are rolled out and evaluated for performance 

before being deployed after training. Finally, a 

feedback loop is introduced to enable continuous 

learning and system improvement, thus making the 

framework highly scalable and resistant for real-

world deployment. State-of-the-art cloud 

environments consist of a heterogeneous collection 

of computational resources — CPUs, GPUs, TPUs, 

edge devices, and hybrid clusters. These 

environments are particularly challenging for 

traditional machine learning systems based on non-

uniform compute capabilities, network latency, 

hardware architectures, and data locality restrictions. 

The DML-HCE Framework proposed here 

overcomes such challenges by providing adaptive, 

resource-aware, and fault-resistant distributed 

machine learning on heterogeneous nodes. (Figure 

1,2) 

 
Figure 1 Proposed Model Diagram for DML 

Frameworks in Heterogenous Cloud 

Environments 
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Figure 2 Proposed Architectural Diagram for 

DML Frameworks in Heterogenous Cloud 

Environments 

 

3.1. Model Description and Component Roles 

of Theoretical Model Diagram 

It aims to achieve maximum scalability and 

efficiency in a heterogeneous cloud setting for 

DML frameworks with the aid of the developed 

theoretical model. It copes with varying resources 

and real-time cooperation and dynamic workload 

allocation issues with intelligent communication, 

adaptive scheduling, advanced orchestration 

strategies. Multi-cloud and hybrid-architecture-

aware: The architecture is a natural fit for multi-

cloud or hybrid infrastructures, where variations in 

CPU, GPU, memory, and network performance 

need to be taken into account. It enables DML 

applications to be distributed, trained, monitored, 

and deployed interactively—with built-in fault 

tolerance and performance predictability. A 

feedback loop from models in deployment to 

system planners allows the model to continue 

evolving and to improve and iterate, which makes it 

a good fit for the ever evolving enterprise AI needs. 

(Table 2) 

 

 

Table 2 Components Role for DML Frameworks in Heterogenous Cloud Environments 
Component Role in the Model 

ML Objectives and Dataset Definition 
Establishes learning goals, dataset scope, and 

structure for distributed training. 
Heterogeneous Cloud Resource 

Identification 
Detects available compute/storage/network 
resources across public and private clouds. 

Data and Model Orchestration 
Uses tools like Kubernetes or Docker Swarm to 
allocate workloads based on resource type and 

availability. 

DML Strategy Selection (e.g., 
Parameter Server, AllReduce) 

Chooses an appropriate training architecture for 
communication and synchronization across nodes. 

Dynamic Resource Scheduling 
Adjusts compute and memory allocation in real time 

to optimize load balancing and reduce idle time. 

Parallel Training Execution 
Conducts distributed model training with hardware-

aware optimization for improved speed and 
accuracy. 

Monitoring, Fault Tolerance, and 
Checkpointing 

Ensures system reliability through real-time error 
detection and backup-recovery mechanisms. 

Model Aggregation and Accuracy 
Evaluation 

Collects model updates from distributed nodes and 
performs centralized validation and tuning. 

Deployment and Feedback Loop 
Deploys trained models and integrates feedback for 

continuous learning. 

3.2. Model Description and Component Roles 

of Architectural Model Diagram 

 Central Orchestrator 

 It has a global perspective of the system. 

 Manages task allocation and model 

synchronization. 

 It is responsible for straggler mitigation and 

fault tolerance. 
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3.3. Resource Profiler 

 This benchmarks compute units (FLOPS, 

memory bandwidth, I/O). 

 It identifies hardware types (e.g., CPU, 

GPU, TPU) and virtualization levels. 

 Task Scheduler (Adaptive Planner) 

 Assigns model shards and data partitions 

based on hardware affinity. 

 This uses reinforcement learning (e.g., Q-

learning or DQN) to learn the best allocation 

policies over time. 

 Node Manager 

 It performs local model training/inference. 

 Performs data preprocessing and caching in-

node. 

 Reports training and health stats. 

 Storage Layer 

 It supports storage hybrids. 

 This layer manages checkpointing, gradient 

logging, and asynchronous updates. 

4. Impact of Integrating Salesforce with Modern 

Cloud-Based Data Warehouses for Real-Time 

Unified Analytics 

4.1. Context and Motivation 

Salesforce, being the leading Customer Relationship 

Management (CRM) platform, stores mission-critical 

operational data—leads, accounts, campaigns, and 

customer interactions. Unfortunately, the data tends 

to be siloed, under-leveraged, or analyzed in batch 

cycles. With the integration of Salesforce with cloud-

based data warehouses (CDWs), companies unleash 

real-time access to consolidated data across 

touchpoints. This integration paves the way to 

deploying Distributed Machine Learning (DML) to 

build scalable, low-latency, and smart decision 

systems. 

4.2. Data Integration Layer: The DML 

Enabler 

Cloud-native ETL/ELT solutions (e.g., Fivetran, 

Matillion, dbt) enable near real-time syncing from 

Salesforce to data warehouses like Snowflake, 

BigQuery, and Redshift. Once integrated, this data 

becomes available to ML workloads on distributed 

compute engines such as: 

 Google Cloud Vertex AI 

 Amazon SageMaker 

 Databricks ML Runtime 

 Ray, Horovod, or PyTorch Lightning. 

This configuration enables DML pipelines that train 

and refresh models continuously from real-time 

behavioral data, supporting continuous learning 

systems. 

4.3. Unified Analytics Role of DML 

 Customer Segmentation and Propensity 

Modeling 

 DML models take unified data from 

Salesforce and data warehouses to generate 

dynamic segments at scale. 

 In DML training runs are spread across cloud-

native GPUs/TPUs, making retraining nearly 

instant as data streams in. 

4.4. Lead Scoring and Conversion Prediction 

 Sales and marketing pipelines need models to 

score leads in real-time from constantly 

updating Salesforce activity logs.DML 

deploys distributed Spark cluster-trained 

micro-batch models drive scoring updates 

into Salesforce objects through reverse ETL 

tools. 

4.5. Churn Prediction and Retention 

Modeling 

Through the combination of service logs (from 

Salesforce Service Cloud), usage telemetry (from the 

warehouse), and transactional history, DML models 

forecast churn risks and initiate proactive retention 

workflows.DML models are trained on partitioned 

time series datasets with TensorFlow on cloud GPUs, 

retrained weekly or continuously. 

5. Experimental Results and Evaluation 

 

Table 3 Improvement Rate After Integration of DML Frameworks in Heterogenous Cloud 

Environments 

Metric 
Baseline (Static 

DML) 
Proposed 

Framework 
Improvement 

Training Time (ImageNet, 
ResNet-50) 

6.5 hours 3.4 hours ~48% faster 

GPU Utilization Rate 57% 91% +59% utilization 



Enhancing the Scalability Efficiency of Distributed Machine Learning                                         2025, Vol. 07, Issue 06 June 

   

International Research Journal on Advanced Science Hub (IRJASH) 600 

 

Load Balancing 
Efficiency (Variance) 

High (±25%) Low (±7%) 
Smoother 

distribution 

Data Throughput 
(MB/sec) 

650 1210 +86% increase 

Fault Recovery Time 
(Node Reboot) 

15 mins 3 mins 
~80% faster 

recovery 

Model Accuracy (Top-1, 
ImageNet) 

75.3% 76.1% Slight improvement 

 

6. Comparative Performance of Pre-

Implementation and Post-Implementation of 

the Framework 

 

 
Figure 2 Analysis of Pre and Post Implementation of the Framework 

 

 

7. Key Insights 

7.1. Nearly 50% Less Training Time 
Thanks to dynamic scheduling and parallelism 

strategies, the framework reduced training time 

from 6.5 to 3.4 hours—greatly accelerating time-to-

insight. 

7.2. Massive Increase in GPU Utilization 

GPU usage jumped from 57% to 91%, reflecting 

more efficient resource allocation and smarter 

hardware-aware task distribution. 

 

7.3. Better Load Balancing Between Nodes 

 Load variance decreased significantly—from 

±25% to ±7%—showcasing enhanced workload 

distribution and less idle time in heterogeneous 

clusters. 

7.4. Data Throughput Nearly Doubled 

 Data handling speed increased from 650 MB/sec to 

1210 MB/sec, eliminating key I/O bottlenecks in 

distributed training. 

7.5. Faster Fault Recovery 
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Intelligent checkpointing and monitoring reduced 

node recovery time from 15 minutes to 3 minutes, 

improving system resilience. 

7.6. Slight but Meaningful Accuracy Gain 

 Even with faster training, model top-1 accuracy 

improved from 75.3% to 76.1%, demonstrating 

performance gains without compromise. 

7.7. Seamless Multi-Cloud Integration 

The system effectively integrated diverse resources 

across AWS, Azure, and GCP, validating its cloud-

agnostic, portable design. 

7.8. Simplified ML Operations through 

Automation 

Kubernetes and other orchestration tools 

streamlined model deployment, monitoring, and 

scaling—freeing DevOps teams from manual 

effort. 

7.9. Real-Time Monitoring for Better 

Decisions 

Continuous performance tracking allowed 

proactive tuning and faster reaction to anomalies 

during training. 

7.10. Scalable, Sustainable 

Architecture 

The framework supports ongoing model updates, 

seamless scaling, and easy integration with more 

advanced AI workflows—making it enterprise-

ready. But the value in our methodology doesn't rest 

upon reinventing these primitives, but upon how we 

combine and optimize them for multi-cloud 

environments—a context in which compute 

heterogeneity, schema evolution, and real-time 

CRM synchs (e.g., Salesforce-CDW) pose new 

challenges that current frameworks don't address 

head-on.Our scheduler applies reinforcement 

learning to schedule workloads dynamically across 

a non-uniform cluster. Additionally, the system 

incorporates feature versioning, handling schema 

evolution, and reverse ETL pipelines for real-time 

feedback into production CRMs, which is seldom 

explored in mainstream DML systems. 

Future Research Directions 

Our proposed self-optimized DML can be exploited 

in the DML systems learned under reinforcement 

learning or meta-learning frameworks and can 

dynamically adjust resources and hyperparameters 

in real time for optimization. Future work can be 

conducted to explore self-optimizing DML systems 

learned with reinforcement learning or meta-

learning, etc. [10]. Federation learning on 

heterogeneous clouds and beyond Federated 

learning on heterogeneous clouds provides us with 

opportunities for privacy-preserving distributed 

intelligence [5]. You could also develop efficiency 

algorithms for various hardware, which could help 

for the smaller carbon footprint in big-scale AI 

deployment [6]. Future work can address the 

interoperation and standardization of orchestration 

tools of different clouds to support transparent 

model migration and inference [11] [13]. Last but 

not least, the integration of explainable AI (XAI) 

with DML frameworks would increase trust, 

transparency, and accountability in automatic 

decision-making, which is becoming increasingly 

more relevant in sensitive applications such as 

healthcare and finance [12] [15]. 

Conclusion  
The proposed DML framework provides a flexible, 

adaptive, and fault-tolerant solution for managing 

DML over heterogeneous cloud environments. It 

can dynamically schedule, be hardware aware, and 

have intelligent orchestration, translating to 

efficient training, resource usage, and system 

robustness [1][2][3]. Extensive evaluations have 

indicated significant savings in training time, 

resources, and human supervision without 

compromising, and in many cases exceeding, model 

quality [7][8][9]. This framework is a strong step 

toward next-generation cloud-native AI systems 

that operate naturally across complex, resource-

heterogeneous system environments. It provides 

real-time monitoring, fault tolerance, and feedback 

mechanisms to enable continuous optimization and 

long-term scalability, thereby opening the door for 

the next generation of agile, efficient, and 

intelligent enterprise solutions [10] [11] [12]. The 

main contribution of this paper is the framework 

design and implementation of a distributed machine 

learning (DML) system that is optimized for 

heterogeneous cloud platforms, designed 

specifically to be integrated with Salesforce and 

contemporary cloud-based data warehouses 

(CDWs) for unified real-time analytics. In contrast 

to classical DML systems based on homogeneous 

infrastructure and fixed data flows, our system 

proposes a resource-aware task scheduler based on 

reinforcement learning, a schema-agnostic data 

ingestion pipeline, and a feedback-based model 

retraining loop—all designed to accommodate 

heterogeneous compute architectures (CPUs, 
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GPUs, TPUs) and dynamically changing CRM 

data. The system further incorporates privacy-

conscious features such as row-level security and 

federated learning readiness to securely scale in 

enterprise-grade, multi-tenant deployments. This 

architecture fills the gap between AI research and 

actual real-world operational CRM workflows by 

changing isolated data into constantly learning, 

actionable intelligence. 
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