
RESEARCH ARTICLE

RSP Science Hub

International Research Journal on Advanced Science Hub
2582-4376

www.rspsciencehub.com
 Vol. 07, Issue 07 July

http://dx.doi.org/10.47392/IRJASH.2025.077

 OPEN ACCESS 673

Shap Based -Android Malware Detection Using Ensemble Learning
Dr N Anitha Devi1, C Karthika2, V Pradeepa3, C Sharmila4
1Assistant professor, Dept. of IT, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
2,3,4UG Scholar, Dept. of IT, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India

Emails: anithadevi@cit.edu.in1, 71762207021@cit.edu.in2, 71762207033@cit.edu.in3,

71762207047@cit.edu.in4

1. Introduction

Android cell phones have also become susceptible

to attacks due to their popularity and openness

since they have an open-source architecture.

Holding more than 70% market share worldwide

as of March 2025 (StatCounter Global Stats),

Android also holds the market for mobile operating

systems. Owing to its user and developer

community, however, it has also become one of the

largest targets for attacks from malicious entities.

These take advantage of open system

vulnerabilities, interfere with device functionality,

and steal users' data. Heuristic and signature-based

detection finds it difficult to detect sophisticated

forms of threats in the form of malware that hides

Article history Abstract

Received: 07 June 2025

Accepted: 21 June 2025

Published: 25 July 2025

Keywords:

Android malware detection,

Sensitive Function Call

Graph, NetworkX,

Word2Vec, Smali code, API

semantic analysis, shap

interpreter, social network

analysis.

Android malware remains a critical threat to mobile security, demanding

robust and transparent detection mechanisms. This approach proposes a

complete method to identify malicious Android apps by using code analysis

and graph-based techniques, enabling the identification to be more precise

and interpretable. The workflow starts with a detailed pre-processing stage,

during which APK samples are decompiled. With the help of Baksmali, we

retrieve DEX files and decompile them into Smali code, extracting the

program behaviour and program flow. Moreover, Androguard is used to

retrieve abstract metadata and permission specifications, helping with code

semantics inspection. We then build Sensitive Function Call Graphs (SFCGs)

for all Android apps, where vertices are sensitive API-calling functions and

edges are their calls between functions. We enrich the graphs with both

layout-based features, like degree centrality, closeness centrality, and

clustering coefficients, and permission patterns in Smali code. Semantic

features are extracted by transforming smali code and using word2Vec.The

features are then utilized to construct a strong ensemble learning system of

multiple individual classifiers. Furthermore, in our effort to further make our

detection system more transparent and strong, we employ SHAP to provide

model explanations, resulting in attribute-specific explanations for malware

classification results. Experiments with a large reference dataset illustrate

the performance of the proposed approach towards obtaining accurate,

interpretable, and scalable Android malware detection with approximately

99.9%. The system not only adds to security but also promotes transparency,

which is crucial in security-critical applications.

mailto:anithadevi@cit.edu.in1,%2071762207021@cit.edu.in2

Shap Based -Android Malware Detection Using Ensemble Learning 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 674

behind or morphs through polymorphic

transformations. Sophisticated detection

techniques to scan structural as well as behavioral

patterns to detect known and unknown malware

threats bring an urgent need as the scenario is

changing by the minute. It is more crucial now than

ever before to possess strong, advanced malware

detectors since mobile telephones are about to

become essential for everyday activities like social

networking, online banking, and computer games.

Traditional methods for detecting Android

malware can be divided into two primary

categories: static analysis and dynamic analysis.

Dynamic analysis monitors the behavior of apps

while they are operating, but it requires emulation

or real device execution, which is time-consuming

and resource-intensive. However, static analysis

provides a faster and less costly method of

examining the code or structure of the program

without actually running it. Most modern static

analysis methods use machine learning algorithms

to extract information like permissions, API calls,

or control flow in order to detect malware. But

these approaches are usually plagued by two

primary issues: (1) excessive dependence on a

single type of feature, and (2) an application

behavior without semantic knowledge or structural

context. Baksmali is initially employed to

decompile Smali code for APK samples. This

enables detailed analysis of functional behavior

and offers a low-level description of the

application's logic. Based on this, we build

Sensitive Function Call Graphs (SFCGs) so that

nodes are functions that call sensitive APIs and

edges denote their interactions. Following

collection, the Word2Vec model is used to convert

the Smali code into semantic embeddings that

capture the contextual relationships between

methods and instructions. By combining the

prediction capabilities of many models, our

ensemble learning method for malware

classification lowers the risk of overfitting and

enhances generalization to unknown infections.

Furthermore, we use SHAP (SHapley Additive

exPlanations) to provide per feature contribution

scores, which increase trust and transparency by

allowing security researchers to comprehend the

reasoning behind a negative flag for an application.

2. Related Work

Android malware detection has gone from

fundamental static or dynamic analysis to

advanced machine learning and graph based

techniques. The reason for this evolution is not

only the need for accurate, explainable, and robust

detection systems against threats like code

obfuscation and continuous changes in malware,

but belonging to the field of

information/discovery. Many prior works have

proven that graph representations can be

instrumental in modeling app behaviors. For

example, Gong et al. (2024) presented a method

that models behavioral chains by connecting

sensitive API calls through Abstract Syntax Tree

(AST) structures. Although they used AST

structures, we are using sensitive behavior directly

at the Smali code level with Sensitive Function

Call Graphs (SFCGs), which provide a lower-level

and closer to running representation of the app's

behavior. Onwuzurike et al. (2019) and Anand et

al. (2025) are examples of leading works on static

analysis that have paved the way for extracting

features like permissions, intents, and API usage.

Our work builds on this due to embedding

semantic vectors into cleaned Smali code using

Word2Vec, and enhancing the feature set using

permission-based flags and SFCG-derived

structural features—providing a deeper context

and more behavioral information. Anand et al.

(2025) also established the value of Smali-level

semantic features, and were able to develop a deep

learning model that utilized a token-level view of

the Smali code to successfully classify malware.

This provides further justification to use both

structural and semantic inputs from the Smali code.

Ensemble-based methods have outperformed

individual models in classification. Cui et al.

(2023) showed that better generalization results

from stacking classifiers according to permissions

and APIs. Similarly, Nethala et al. (2025)

presented a deep ensemble framework that

successfully handles unbalanced Android malware

datasets by combining neural networks with

conventional classifiers. These results are in line

with our use of an ensemble that combines

Random Forest and XGBoost with soft voting,

providing improved robustness and resistance to

overfitting. Ensemble-based methods have

demonstrated superior performance in

classification. The lack of interpretability of the

model is a significant gap in previous work. Even

though many systems are very accurate, their

decision-making process is not very transparent.

Dr N Anitha Devi et al 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 675

We integrate SHAP explainability into our system,

drawing inspiration from Sharma et al. (2024),

who used SHAP to highlight significant features in

malware predictions. This enhancement makes our

model more reliable and useful for real-world

implementation by allowing it to explain its

predictions—by emphasizing which structural or

semantic features influenced the classification.

3. Proposed Methodology

Our proposed methodology consists of five stages,

viz., pre-processing, SFCG generation, smali code

transformation, ensemble model classification, and

SHAP-based interpretation, to address the

limitations of conventional detection techniques.

3.1. Pre-processing

In this phase, in order to extract classes.dex files

from Android APK files, we perform reverse

engineering using the tool androguard;

subsequently, we extract the smali code of every

APK from the obtained DEX file using baksmali-

2.5.2, a disassembler. These smali code are

organized and stored in hierarchy manner and can

be used for further processing.

3.1.1. APK File Structure

An Android APK (Android Package) is essentially

a ZIP archive that contains all the components

required to install and run an Android application.

Once extracted or disassembled, an APK typically

includes the following files and directories:

 AndroidManifest.xml: Declares essential

information about the app, such as package

name, components (activities, services),

requested permissions, and more.

 classes.dex: Contains the Dalvik

Executable bytecode that runs on the

Android Runtime (ART). These files are

later converted into smali code during

disassembly.

 res/: A directory containing resources such

as layouts (.xml), images (.png), and

strings.

 lib/: Contains compiled native code

libraries for various CPU architectures

(e.g., armeabi-v7a, x86).

 assets/: Raw asset files bundled with the

app.

 META-INF/: Contains metadata about the

APK, including signatures and certificates.

 resources.arsc: Contains precompiled

resources

3.2. Sensitive Function Call Graph

(SFCG)Generation

This phase constructs SFCG where

3.2.1. Sensitive Node Identification

Sensitive nodes of each apk is identified by

comparing it with the predefined sensitive api

list(Camodroid) like "Landroid/accounts/

Account Authenticator Activity;-

>unbindService","Landroid/app/Activity;-

>clearWallpaper",

3.2.2. Ancestor Tracing

For every sensitive node identified, the control

flow is traced backward through the call graph to

locate all possible ancestor methods that eventually

invoke the sensitive API. This makes sure that

context to sensitive behaviour is preserved. We

eliminate branches irrelevant to sensitive Figure 1

shows Architecture of Proposed Work

behavior in the Function Call Graph (FCG), thus

reducing scope to chains of sensitive behavior

alone, reducing computational complexity without

sacrificing analytical depth.

3.2.3. SFCG Construction and Storage

A trimmed version of the whole call graph is

generated using the networkx Python package,

displaying just the nodes involved in sensitive

chains. The SFCG is stored in structured JSON

form in three main components:

"sensitive_nodes" – a list of API calls recognized

as sensitive,

 "ancestors" – all approaches that end with the

invocation of the sensitive APIs,

 "structural_features" – graph measures for each

method.

3.2.4. Structural Feature Extraction

For each node of the formed SFCG, we compute a

set of social network analysis metrics from

network : Degree Centrality ,In-degree and Out

degree,Closeness Centrality ,Betweeness

Centrality, Harmonic Centrality, PageRank ,

Clustering Coefficient and Square Clustering

Coefficient .These metrics numerically reflect the

position and impact of a function within the

behavior chain to aid in the extraction of dense

structural feature vectors per APK.

3.2.5. Integration of Permission based

features

In addition to graph features, we also extract

Shap Based -Android Malware Detection Using Ensemble Learning 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 676

permission-based features from both the APK

manifest and the Smali code.

These include flags such as

 uses_SEND_SMS, uses_READ_SMS,

uses_RECEIVE_SMS

 uses_READ_PHONE_STATE,

uses_CAMERA, uses_RECORD_AUDIO

 uses_INTERNET,

uses_ACCESS_FINE_LOCATION, etc.

These features are binary indicators, representing

the presence of potentially risky API usages.

Figure 2 shows APK File Structure

Figure 1 Architecture of Proposed Work

Figure 2 APK File Structure

Dr N Anitha Devi et al 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 677

3.3. Smali Code Transformation

3.3.1. Eliminating Variable Markings

Registers act as storage spaces for temporary data

in smali files. The lines of code in Smali files

frequently use several registers . These registers

are usually named with variables like v0, v1, p0,

p1, and so on, and are linked with specific

functions being executed. Nevertheless, this

comprehensive data regarding storage variables

and their linked functions might not clearly assist

in the assessment of a program's harmful or

harmless character.

3.3.2. Eliminating Special Characters

Smali files often have extra characters that don't

really help in giving input to the detection system.

These characters are usually ignored by the

tokenizer. From Our observations are that when the

tokenizer finds special characters in the input, it

usually swaps them with spaces . However, it’s

important to note that this method doesn’t always

work perfectly, because sometimes it can change

the original meaning of the code. To solve this

issue, we use two strategies for handling special

characters: First, during the text cleaning step, any

special characters that connect two words or are at

the start or end of a word are replaced with spaces.

3.3.3. Eliminating Single-Character

Strings

After getting rid of special characters, we notice a

lot of single-letter strings appearing inside the

smali files. These one-character strings don't really

add any important meaning to the code. So, we

move forward and remove all these single-length

characters too.

3.3.4. Eliminating Comments and Alerts
Inside smali files, there are many notes and

notifications meant to give information to the user.

These messages are made to appear in pop-up

boxes while the program runs. However, these

lines don't really help with malware detection and

can safely be ignored or deleted.

3.3.5. Eliminating Redundant Lines

After eliminating specific words, characters, and

variables in earlier steps of our process, many lines

in the smali files become identical.At this

stage,having just one of these identical lines is

enough ,so all the other repeated lines can safely be

deleted.

3.4. Ensemble Classification

To develop a more dependable malware detection

model, an ensemble learning approach utilizing

Random Forest and XGBoost was implemented

Figure 3 These two have strong performance

metrics, are efficient in high-dimensional feature

sets, and are capable of preventing over-fitting.

 Random Forest: An example of a bagging

style ensemble, in which many different

decision trees are trained, where

predictions are based on a majority vote

within the ensemble.

 XGBoost: An ensemble boosting model

where trees are incrementally constructed,

and are constructed to mitigate the errors of

the previous models. Figure 4 shows Shap

Interpretation

Figure 3 Ensemble Classification

Shap Based -Android Malware Detection Using Ensemble Learning 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 678

Figure 4 Shap Interpretation

The final method for predicting uses soft voting,

whereby both classifiers predict probabilities

independently for malware, and the mean of both

probabilities is taken to determine the label decision

for the APK. Simply put, if the mean probability

crosses a pre-specified threshold (e.g., 0.5) than the

APK would be labelled malicious, otherwise

benign. This ensemble method was significant in

minimizing false positives, while increasing

detection accuracy. The combined model was tested

and returned.

3.5. Interpretation

To improve the interpretability of malware

classifications, the SHAP (SHapley Additive

exPlanations) framework is incorporated in the last

stage of the analysis. SHAP provides an explanation

of individual predictions by calculating the

contributions of each input feature, concerning the

final classification. The color of each bar is encoded

with the SHAP value, which reflects how much that

feature pushed the model to predict a malicious or

benign output in the first place.

 Positive SHAP (red): This feature adds to

the probability of being malicious.

 Negative SHAP (blue): This feature

supports benign behavior.

The darker the color, the more influence that feature

had on the model's decision.

4. Results and Discussion

4.1. Results

4.1.1. Experimental Setup

The proposed Android malware detection

framework was evaluated on a Lenovo laptop

equipped with an Intel 5 processor. The

implementation was developed in Python 3.8,

leveraging open-source libraries such as

Androguard, Baksmali, NetworkX, and PyTorch

Geometric for Graph Neural Network.

4.1.2. Dataset Description

We used the AndroZoo repository's official API to

request access in order to create a custom dataset for

malware detection in our investigation. The APK

samples were obtained directly through permitted

API calls customized to our project's needs, in

contrast to pre-collected dumps. Specifically, we

focused on collecting APKs from a select few years

from 2011 to 2024.For every chosen year, we

downloaded 1,000 malicious and 1,000 benign

samples. A benign sample was identified by a

VirusTotal detection score of 0, whereas a

hazardous sample was identified Table 1 shows

Ensemble Classification Report

Table 1 Ensemble Classification Report

Label Precision recall
F1-

score
Support

0 0.999 0.999 0.999 182

1 0.999 0.999 0.999 195

accuracy 0.999 377

by a detection score of 10 or higher. However,

network and availability problems prevented some

APKs from being downloaded successfully. And

number of apks available for particular year .

Dr N Anitha Devi et al 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 679

4.1.3. Evaluation Metrics

The widely used metrics for evaluating the

performance of our detection method are Accuracy,

Precision, Recall, and F1(F-score) shown in Table 2.

Accuracy = (TP +TN) / (ALL)

Precision = TP/ (TP +FP)

Recall = TP/ (TP +FN)

F1 =2∗Precision∗Recall / (Precision +Recall)

(1) where TP (True Positive) is the number of

malicious Android apps that are correctly labeled as

malicious, FN (False Negative) is the number of

benign Android apps that are falsely labeled as

malicious apps. FP (False Positive) is the number of

malicious Android apps falsely labeled as benign,

and TN (True Negative) is the number of benign

Android apps correctly labeled as benign.

4.2. Discussion

The very high classification scores presented in

Table 1 show the effectiveness of the proposed

ensemble-based detection system. The label 0

indicates benign and 1 indicates malicious. With all

of the major performance measures at 0.999, the

model has remarkable strength for distinguishing

between benign Android applications and malicious

ones. This results substantiate the merging of

semantic features from Smali code and structural

features from Sensitive Function Call Graphs

(SFCGs). As displayed in Table 2, ensemble

methods in the form of Random Forest and XGBoost

performed consistently better in all evaluation

metrics we investigated in this study when compared

to the other algorithms used. XGBoost yielded a

recognition-based F1 score of 99.94%, which in

terms of F1 has the best balance between precision

and recall. Random Forest followed XGBoost

closely with an F1 score of 99.70% and achieved the

highest accuracy of algorithms in this study with

99.72%. Therefore, we used Random Forest and

XGBoost as the base models in our ensemble

framework. Table 2 shows Comparison of Different

Models

Table 2 Comparison of Different Models

Models F1-score Precision recall Accuracy

SVM 96.66 96.74 97.31 95.64

Random
Forest

99.70 99.73 99.67
99.72

Decision Tree 98.45 98.56 98.65 98.67

KNN 92.46 92.56 92.36 92.85

XGBoost 99.94 99.15 99.14 99.66

Light GBM 86.78 88.43 85.83 87.82

Conclusion

Our proposed framework achieves effective

Android malware detection by capitalising on both

structural information with Sensitive Function Call

Graphs (SFCGs) and semantic information with

Word2Vec-embedded Smali code. The fine-tuning

of ensemble classifier set-ups such as Random

Forest and XGBoost with soft voting achieves

classification capabilities and SHAP explanations

improved interpretability by explaining which

features mattered most for each classifier decision.

Despite high accuracy and transparency, there are

large opportunities for future improvements. Most

importantly, expanding the dataset to have more

APKs across years, obfuscation techniques, and

also, dynamic behavioral features (like runtime

calls or network traces) could help achieve a more

real-time or on-device detection system; further

resilience could come from adversarial training.

References

[1]. Gong, J., Niu, W., Li, S., Zhang, M., &

Zhang, X. (2024). Sensitive Behavioral

Chain-focused Android Malware Detection

Fused with AST Semantics. IEEE

Transactions on Information Forensics and

Security. https:// ieeexplore. ieee.org/

abstract/ document/10695137/

[2]. Onwuzurike, L., Mariconti, E., Andriotis,

P., Cristofaro, E. D., Ross, G., &

Stringhini, G. (2019). MaMaDroid:

Detecting Android Malware by Building

Markov Chains of Behavioral Models

(Extended Version). ACM Transactions on

Privacy and Security, 22(2), 1–34.

Shap Based -Android Malware Detection Using Ensemble Learning 2025, Vol. 07, Issue 07 July

International Research Journal on Advanced Science Hub (IRJASH) 680

https://doi.org/10.1145/3313391

[3]. Huang, Y., Liu, J., Xiang, X., Wen, P.,

Wen, S., Chen, Y., Chen, L., & Zhang, Y.

(2024). Malware Identification Method in

Industrial Control Systems Based on

Opcode2vec and CVAE-GAN. Sensors,

24(17), 5518.

[4]. Anand, A., Singh, J. P., & Singh, A. K.

(2025). Smali code-based deep learning

model for Android malware detection. The

Journal of Supercomputing, 81(4), 1–31.

[5]. Cui, L., Cui, J., Ji, Y., Hao, Z., Li, L., &

Ding, Z. (2023). API2Vec: Learning

Representations of API Sequences for

Malware Detection. Proceedings of the

32nd ACM SIGSOFT International

Symposium on Software Testing and

Analysis, 261–273. https:// doi.org/

10.1145/3597926.3598054

[6]. Nethala, S., Chopra, P., Kamaluddin, K.,

Alam, S., Alharbi, S., & Alsaffar, M.

(2025). A deep learning-based ensemble

framework for robust android malware

detection. IEEE Access, 13, 46673–46696.

[7]. Sharma, S., Ahlawat, P., & Khanna, K.

(2024). DeepMDFC: A deep learning

based android malware detection and

family classification method. SECURITY

AND PRIVACY, 7(2), e347. https://

doi.org/10.1002/spy2.347

[8]. Faghihi, F., Zulkernine, M., & Ding, S.

(2022). CamoDroid: An Android

application analysis environment resilient

against sandbox evasion. Journal of

Systems Architecture, 125, 102452.

[9]. Huang, H., Huang, W., Zhou, Y., Luo, W.,

& Wang, Y. (2025). FEdroid: A

lightweight and interpretable machine

learning-based android malware detection

system. Cluster Computing, 28(4), 224.

[10]. Gu, J., Zhu, H., Han, Z., Li, X., & Zhao, J.

(2024). GSEDroid: GNN-based android

malware detection framework using

lightweight semantic embedding.

Computers & Security, 140, 103807.

[11]. Nasser, A. R., Hasan, A. M., & Humaidi,

A. J. (2024). DL-AMDet: Deep learning-

based malware detector for android.

Intelligent Systems with Applications, 21,

200318.

[12]. Alzaylaee, M. K., Yerima, S. Y., & Sezer,

S. (2020). DL-Droid: Deep learning based

android malware detection using real

devices. Computers & Security, 89,

101663.

[13]. Ma, Z., Ge, H., Wang, Z., Liu, Y., & Liu,

X. (2020). Droidetec: Android Malware

Detection and Malicious Code Localization

through Deep Learning (No.

arXiv:2002.03594). arXiv. https:// doi.org/

10.48550/arXiv.2002.03594

[14]. Liu, X., Liu, X., Hao, K., Wang, K., Chen,

X., & Niu, W. (2024). HGNNDroid:

Android Malware Detection Based on

Heterogeneous Graph Neural Network.

2024 IEEE 9th International Conference on

Data Science in Cyberspace (DSC), 378–

384. https:// ieeexplore. ieee.org/ abstract/

document/10859039/

[15]. Wu, Y., Li, X., Zou, D., Yang, W., Zhang,

X., & Jin, H. (2019). Malscan: Fast market-

wide mobile malware scanning by social-

network centrality analysis. 2019 34th

IEEE/ACM International Conference on

Automated Software Engineering (ASE),

139–150. https:// ieeexplore. ieee.org/

abstract/document/8952382/

