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1. Introduction

Android cell phones have also become susceptible 

to attacks due to their popularity and openness 

since they have an open-source architecture. 

Holding more than 70% market share worldwide 

as of March 2025 (StatCounter Global Stats), 

Android also holds the market for mobile operating 

systems. Owing to its user and developer 

community, however, it has also become one of the 

largest targets for attacks from malicious entities. 

These take advantage of open system 

vulnerabilities, interfere with device functionality, 

and steal users' data. Heuristic and signature-based 

detection finds it difficult to detect sophisticated 

forms of threats in the form of malware that hides 
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Android malware remains a critical threat to mobile security, demanding 

robust and transparent detection mechanisms. This approach proposes a 

complete method to identify malicious Android apps by using code analysis 

and graph-based techniques, enabling the identification to be more precise 

and interpretable. The workflow starts with a detailed pre-processing stage, 

during which APK samples are decompiled. With the help of Baksmali, we 

retrieve DEX files and decompile them into Smali code, extracting the 

program behaviour and program flow. Moreover, Androguard is used to 

retrieve abstract metadata and permission specifications, helping with code 

semantics inspection. We then build Sensitive Function Call Graphs (SFCGs) 

for all Android apps, where vertices are sensitive API-calling functions and 

edges are their calls between functions. We enrich the graphs with both 

layout-based features, like degree centrality, closeness centrality, and 

clustering coefficients, and permission patterns in Smali code. Semantic 

features are extracted by transforming smali code and using word2Vec.The 

features are then utilized to construct a strong ensemble learning system of 

multiple individual classifiers. Furthermore, in our effort to further make our 

detection system more transparent and strong, we employ SHAP to provide 

model explanations, resulting in attribute-specific explanations for malware 

classification results. Experiments with a large reference dataset illustrate 

the performance of the proposed approach towards obtaining accurate, 

interpretable, and scalable Android malware detection with approximately 

99.9%. The system not only adds to security but also promotes transparency, 

which is crucial in security-critical applications. 
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behind or morphs through polymorphic 

transformations. Sophisticated detection 

techniques to scan structural as well as behavioral 

patterns to detect known and unknown malware 

threats bring an urgent need as the scenario is 

changing by the minute. It is more crucial now than 

ever before to possess strong, advanced malware 

detectors since mobile telephones are about to 

become essential for everyday activities like social 

networking, online banking, and computer games. 

Traditional methods for detecting Android 

malware can be divided into two primary 

categories: static analysis and dynamic analysis. 

Dynamic analysis monitors the behavior of apps 

while they are operating, but it requires emulation 

or real device execution, which is time-consuming 

and resource-intensive. However, static analysis 

provides a faster and less costly method of 

examining the code or structure of the program 

without actually running it. Most modern static 

analysis methods use machine learning algorithms 

to extract information like permissions, API calls, 

or control flow in order to detect malware. But 

these approaches are usually plagued by two 

primary issues: (1) excessive dependence on a 

single type of feature, and (2) an application 

behavior without semantic knowledge or structural 

context. Baksmali is initially employed to 

decompile Smali code for APK samples. This 

enables detailed analysis of functional behavior 

and offers a low-level description of the 

application's logic. Based on this, we build 

Sensitive Function Call Graphs (SFCGs) so that 

nodes are functions that call sensitive APIs and 

edges denote their interactions. Following 

collection, the Word2Vec model is used to convert 

the Smali code into semantic embeddings that 

capture the contextual relationships between 

methods and instructions. By combining the 

prediction capabilities of many models, our 

ensemble learning method for malware 

classification lowers the risk of overfitting and 

enhances generalization to unknown infections. 

Furthermore, we use SHAP (SHapley Additive 

exPlanations) to provide per feature contribution 

scores, which increase trust and transparency by 

allowing security researchers to comprehend the 

reasoning behind a negative flag for an application. 

2. Related Work 

Android malware detection has gone from 

fundamental static or dynamic analysis to 

advanced machine learning and graph based 

techniques. The reason for this evolution is not 

only the need for accurate, explainable, and robust 

detection systems against threats like code 

obfuscation and continuous changes in malware, 

but belonging to the field of 

information/discovery. Many prior works have 

proven that graph representations can be 

instrumental in modeling app behaviors. For 

example, Gong et al. (2024) presented a method 

that models behavioral chains by connecting 

sensitive API calls through Abstract Syntax Tree 

(AST) structures. Although they used AST 

structures, we are using sensitive behavior directly 

at the Smali code level with Sensitive Function 

Call Graphs (SFCGs), which provide a lower-level 

and closer to running representation of the app's 

behavior. Onwuzurike et al. (2019) and Anand et 

al. (2025) are examples of leading works on static 

analysis that have paved the way for extracting 

features like permissions, intents, and API usage. 

Our work builds on this due to embedding 

semantic vectors into cleaned Smali code using 

Word2Vec, and enhancing the feature set using 

permission-based flags and SFCG-derived 

structural features—providing a deeper context 

and more behavioral information. Anand et al. 

(2025) also established the value of Smali-level 

semantic features, and were able to develop a deep 

learning model that utilized a token-level view of 

the Smali code to successfully classify malware. 

This provides further justification to use both 

structural and semantic inputs from the Smali code. 

Ensemble-based methods have outperformed 

individual models in classification. Cui et al. 

(2023) showed that better generalization results 

from stacking classifiers according to permissions 

and APIs. Similarly, Nethala et al. (2025) 

presented a deep ensemble framework that 

successfully handles unbalanced Android malware 

datasets by combining neural networks with 

conventional classifiers. These results are in line 

with our use of an ensemble that combines 

Random Forest and XGBoost with soft voting, 

providing improved robustness and resistance to 

overfitting. Ensemble-based methods have 

demonstrated superior performance in 

classification. The lack of interpretability of the 

model is a significant gap in previous work. Even 

though many systems are very accurate, their 

decision-making process is not very transparent. 
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We integrate SHAP explainability into our system, 

drawing inspiration from Sharma et al. (2024), 

who used SHAP to highlight significant features in 

malware predictions. This enhancement makes our 

model more reliable and useful for real-world 

implementation by allowing it to explain its 

predictions—by emphasizing which structural or 

semantic features influenced the classification. 

3. Proposed Methodology 

Our proposed methodology consists of five stages, 

viz., pre-processing, SFCG generation, smali code 

transformation, ensemble model classification, and 

SHAP-based interpretation, to address the 

limitations of conventional detection techniques. 

3.1. Pre-processing 

In this phase, in order to extract classes.dex files 

from Android APK files, we perform reverse 

engineering using the tool androguard; 

subsequently, we extract the smali code of every 

APK from the obtained DEX file using baksmali-

2.5.2, a disassembler. These smali code are 

organized and stored in hierarchy manner and can 

be used for further processing. 

3.1.1. APK File Structure 

An Android APK (Android Package) is essentially 

a ZIP archive that contains all the components 

required to install and run an Android application. 

Once extracted or disassembled, an APK typically 

includes the following files and directories: 

 AndroidManifest.xml: Declares essential 

information about the app, such as package 

name, components (activities, services), 

requested permissions, and more. 

 classes.dex: Contains the Dalvik 

Executable bytecode that runs on the 

Android Runtime (ART). These files are 

later converted into smali code during 

disassembly. 

 res/: A directory containing resources such 

as layouts (.xml), images (.png), and 

strings. 

 lib/: Contains compiled native code 

libraries for various CPU architectures 

(e.g., armeabi-v7a, x86). 

 assets/: Raw asset files bundled with the 

app. 

 META-INF/: Contains metadata about the 

APK, including signatures and certificates. 

 resources.arsc: Contains precompiled 

resources 

3.2. Sensitive Function Call Graph 

(SFCG)Generation 

This phase constructs SFCG where 

3.2.1. Sensitive Node Identification 

Sensitive nodes of each apk is identified by 

comparing it with the predefined sensitive api 

list(Camodroid) like    "Landroid/accounts/ 

Account Authenticator Activity;-

>unbindService","Landroid/app/Activity;-

>clearWallpaper",  

3.2.2. Ancestor Tracing 

For every sensitive node identified, the control 

flow is traced backward through the call graph to 

locate all possible ancestor methods that eventually 

invoke the sensitive API. This makes sure that 

context to sensitive behaviour is preserved. We 

eliminate branches irrelevant to sensitive Figure 1 

shows Architecture of Proposed Work 

behavior in the Function Call Graph (FCG), thus 

reducing scope to chains of sensitive behavior 

alone, reducing computational complexity without 

sacrificing analytical depth. 

3.2.3. SFCG Construction and Storage 

A trimmed version of the whole call graph is 

generated using the networkx Python package, 

displaying just the nodes involved in sensitive 

chains. The SFCG is stored in structured JSON 

form in three main components: 

"sensitive_nodes" – a list of API calls recognized 

as sensitive, 

 "ancestors" – all approaches that end with the 

invocation of the sensitive APIs, 

 "structural_features" – graph measures for each 

method. 

3.2.4. Structural Feature Extraction 

For each node of the formed SFCG, we compute a 

set of social network analysis metrics from 

network : Degree Centrality ,In-degree and Out 

degree,Closeness Centrality ,Betweeness 

Centrality, Harmonic Centrality, PageRank , 

Clustering Coefficient and Square Clustering 

Coefficient .These metrics numerically reflect the 

position and impact of a function within the 

behavior chain to aid in the extraction of dense 

structural feature vectors per APK. 

3.2.5. Integration of Permission based 

features  

In addition to graph features, we also extract  
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permission-based features from both the APK 

manifest and the Smali code.  

These include flags such as 

 uses_SEND_SMS, uses_READ_SMS, 

uses_RECEIVE_SMS 

 uses_READ_PHONE_STATE, 

uses_CAMERA, uses_RECORD_AUDIO 

 uses_INTERNET, 

uses_ACCESS_FINE_LOCATION, etc. 

These features are binary indicators, representing 

the presence of potentially risky API usages. 

Figure 2 shows APK File Structure

  

 
Figure 1 Architecture of Proposed Work 

 

 
Figure 2 APK File Structure 
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3.3. Smali Code Transformation 

3.3.1. Eliminating Variable Markings 

Registers act as storage spaces for temporary data 

in smali files. The lines of code in Smali files 

frequently use several registers . These registers 

are usually named with variables like v0, v1, p0, 

p1, and so on, and are linked with specific 

functions being executed. Nevertheless, this 

comprehensive data regarding storage variables 

and their linked functions might not clearly assist 

in the assessment of a program's harmful or  

harmless character. 

3.3.2. Eliminating Special Characters 

Smali files often have extra characters that don't 

really help in giving input to the detection system. 

These characters are usually ignored by the 

tokenizer. From Our observations are that when the 

tokenizer finds special characters in the input, it 

usually swaps them with spaces . However, it’s 

important to note that this method doesn’t always 

work perfectly, because sometimes it can change 

the original meaning of the code. To solve this 

issue, we use two strategies for handling special 

characters: First, during the text cleaning step, any 

special characters that connect two words or are at 

the start or end of a word are replaced with spaces.  

3.3.3. Eliminating Single-Character 

Strings 

After getting rid of special characters, we notice a 

lot of single-letter strings appearing inside the 

smali files. These one-character strings don't really 

add any important meaning to the code. So, we 

move forward and remove all these single-length 

characters too. 

3.3.4. Eliminating Comments and Alerts 
Inside smali files, there are many notes and 

notifications meant to give information to the user. 

These messages are made to appear in pop-up 

boxes while the program runs. However, these 

lines don't really help with malware detection and 

can safely be ignored or deleted. 

3.3.5. Eliminating Redundant Lines 

After eliminating specific words, characters, and 

variables in earlier steps of our process, many lines 

in the smali files become identical.At this 

stage,having just one of these identical lines is 

enough ,so all the other repeated lines can safely be 

deleted. 

3.4. Ensemble Classification 

To develop a more dependable malware detection 

model, an ensemble learning approach utilizing 

Random Forest and XGBoost was implemented 

Figure 3 These two have strong performance 

metrics, are efficient in high-dimensional feature 

sets, and are capable of preventing over-fitting. 

 Random Forest: An example of a bagging 

style ensemble, in which many different 

decision trees are trained, where 

predictions are based on a majority vote 

within the ensemble. 

 XGBoost: An ensemble boosting model 

where trees are incrementally constructed, 

and are constructed to mitigate the errors of 

the previous models. Figure 4 shows Shap 

Interpretation 
 

 

 

 
Figure 3 Ensemble Classification 
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Figure 4 Shap Interpretation 

 

The final method for predicting uses soft voting, 

whereby both classifiers predict probabilities 

independently for malware, and the mean of both 

probabilities is taken to determine the label decision 

for the APK. Simply put, if the mean probability 

crosses a pre-specified threshold (e.g., 0.5) than the 

APK would be labelled malicious, otherwise 

benign. This ensemble method was significant in 

minimizing false positives, while increasing 

detection accuracy. The combined model was tested 

and returned. 

3.5. Interpretation 

To improve the interpretability of malware 

classifications, the SHAP (SHapley Additive 

exPlanations) framework is incorporated in the last 

stage of the analysis. SHAP provides an explanation 

of individual predictions by calculating the 

contributions of each input feature, concerning the 

final classification. The color of each bar is encoded 

with the SHAP value, which reflects how much that 

feature pushed the model to predict a malicious or 

benign output in the first place. 

 Positive SHAP (red): This feature adds to 

the probability of being malicious. 

 Negative SHAP (blue): This feature 

supports benign behavior. 

The darker the color, the more influence that feature 

had on the model's decision. 

4. Results and Discussion 

4.1. Results 

4.1.1. Experimental Setup 

The proposed Android malware detection 

framework was evaluated on a Lenovo laptop 

equipped with an Intel 5 processor. The 

implementation was developed in Python 3.8, 

leveraging open-source libraries such as 

Androguard, Baksmali, NetworkX, and PyTorch 

Geometric for Graph Neural Network. 

4.1.2. Dataset Description 

We used the AndroZoo repository's official API to 

request access in order to create a custom dataset for 

malware detection in our investigation. The APK 

samples were obtained directly through permitted 

API calls customized to our project's needs, in 

contrast to pre-collected dumps. Specifically, we 

focused on collecting APKs from a select few years 

from 2011 to 2024.For every chosen year, we 

downloaded 1,000 malicious and 1,000 benign 

samples. A benign sample was identified by a 

VirusTotal detection score of 0, whereas a 

hazardous sample was identified Table 1 shows 

Ensemble Classification Report 

 

Table 1 Ensemble Classification Report 

Label Precision recall 
F1-

score 
Support 

0 0.999 0.999 0.999 182 

1 0.999 0.999 0.999 195 

accuracy   0.999 377 

 

by a detection score of 10 or higher. However, 

network and availability problems prevented some 

APKs from being downloaded successfully. And 

number of apks available for particular year . 
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4.1.3. Evaluation Metrics 

The widely used metrics for evaluating the 

performance of our detection method are Accuracy, 

Precision, Recall, and F1(F-score) shown in Table 2. 

Accuracy = (TP +TN) / (ALL)  

Precision = TP/ (TP +FP)  

Recall = TP/ (TP +FN)  

F1 =2∗Precision∗Recall / (Precision +Recall)  

(1) where TP (True Positive) is the number of 

malicious Android apps that are correctly labeled as  

malicious, FN (False Negative) is the number of 

benign Android apps that are falsely labeled as 

malicious apps. FP (False Positive) is the number of 

malicious Android apps falsely labeled as benign, 

and TN (True Negative) is the number of benign 

Android apps correctly labeled as benign. 

4.2. Discussion 

The very high classification scores presented in 

Table 1 show the effectiveness of the proposed 

ensemble-based detection system. The label 0 

indicates benign and 1 indicates malicious. With all 

of the major performance measures at 0.999, the 

model has remarkable strength for distinguishing 

between benign Android applications and malicious 

ones. This results substantiate the merging of 

semantic features from Smali code and structural 

features from Sensitive Function Call Graphs 

(SFCGs). As displayed in Table 2, ensemble 

methods in the form of Random Forest and XGBoost 

performed consistently better in all evaluation 

metrics we investigated in this study when compared 

to the other algorithms used. XGBoost yielded a 

recognition-based F1 score of 99.94%, which in 

terms of F1 has the best balance between precision 

and recall. Random Forest followed XGBoost 

closely with an F1 score of 99.70% and achieved the 

highest accuracy of algorithms in this study with 

99.72%. Therefore, we used Random Forest and 

XGBoost as the base models in our ensemble 

framework. Table 2 shows Comparison of Different 

Models 

 
 

Table 2 Comparison of Different Models 

Models F1-score Precision recall Accuracy 

SVM 96.66 96.74 97.31 95.64 

Random 
Forest 

99.70 99.73 99.67 
99.72 

 

Decision Tree 98.45 98.56 98.65 98.67 

KNN 92.46 92.56 92.36 92.85 

XGBoost 99.94 99.15 99.14 99.66 

Light GBM 86.78 88.43 85.83 87.82 

Conclusion 

Our proposed framework achieves effective 

Android malware detection by capitalising on both 

structural information with Sensitive Function Call 

Graphs (SFCGs) and semantic information with 

Word2Vec-embedded Smali code. The fine-tuning 

of ensemble classifier set-ups such as Random 

Forest and XGBoost with soft voting achieves 

classification capabilities and SHAP explanations 

improved interpretability by explaining which 

features mattered most for each classifier decision.  

Despite high accuracy and transparency, there are 

large opportunities for future improvements. Most 

importantly, expanding the dataset to have more 

APKs across years, obfuscation techniques, and 

also, dynamic behavioral features (like runtime 

calls or network traces) could help achieve a more 

real-time or on-device detection system; further 

resilience could come from adversarial training. 
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