
RESEARCH ARTICLE

RSP Science Hub

International Research Journal on Advanced Science Hub
2582-4376

www.rspsciencehub.com
 Vol. 07, Issue 09 September

http://dx.doi.org/10.47392/IRJASH.2025.084

 OPEN ACCESS 755

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of

Algorithms from Cloud to Quantum
Suma Surasingh1, Dr. Pradeep S2, Shravya G3, Deepika P S4
1Research Scholar, Dept of Computing Technologies, SRM Institute of Science and Technology

Kattankulathur, Chennai, India.
2Associate Professor, Dept. of Computing Technologies, SRM Institute of Science and Technology,

Kattankulathur, Chennai, India.
3UG Student, Dept of CSE, SRM Valliammai Engineering College, Chennai- 603 203, India.
4UG Student, Dept of Manufacturing Engineering, Anna University-CEG, Guindy, Chennai, India.

Email ID: ss1399@srmist.edu.in1, pradeeps1@srmist.edu.in2, shravyagadupuri@gmail.com3,

deepika21745@gmail.com4

Article history Abstract

Received: 13 August 2025

Accepted: 27 August 2025

Published:04 September 2025

Keywords:

Cloud computing, Edge

computing, Load balancing

algorithms, Quantum

computing.

Load balancing is a pivotal facet of distributed computing systems that

significantly influences the performance of the system by achieving optimal

resource utilization, reduced response time, and enhanced system reliability

through the even distribution of workloads to computing nodes. The rate at

which the computing paradigms are changing has resulted in the increased

complexity of the load balancing problem, which is evident in the cloud, fog,

edge, grid, and quantum computing since they are particularly characterized

by the issues of latency sensitivity, energy efficiency, heterogeneity,

scalability, and quantum decoherence. This paper surveys load balancing

algorithms implemented in the five computing paradigms, highlighting the

main operating principles, architectural differences, scheduling strategies,

and performance evaluation criteria applicable to each context. The cloud

computing section is devoted to the classification of static and dynamic

algorithms, and we also touch on the weighted round-robin, honeybee

foraging, and VM migration strategies. The paper also surveys the load

balancing of the fog and edge computing wherein we pinpoint the latency-

aware and mobility-aware load balancing strategies that are best for the

resource-limited, geographically distributed infrastructures. In the grid

computing section, peer-to-peer, and decentralized scheduling methods are

discussed, which are best suited to loosely coupled networks. Quantum

computing is also discussed in the paper as an early stage of load balancing

in hybrid classical-quantum systems, the partitioning of quantum jobs, and

the coherence limitation of qubit. In a unified taxonomy of algorithms, the

paper describes how various algorithms can be mapped depending on their

design philosophy, decision criteria, and applicability to different paradigms.

Further, the paper lists evaluation charters that are widely utilized in the

literature and underscores open issues like cross-paradigm interoperability,

mailto:ss1399@srmist.edu.in1
mailto:pradeeps1@srmist.edu.in2
mailto:shravyagadupuri@gmail.com3
mailto:deepika21745@gmail.com4

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 756

1. Introduction
Computing systems in the digital landscape have

started to operate at a higher level of efficiency,

minimal latency, and absolute reliability, together

with processing data of an increasingly higher

volume while at the same time servicing user

demands that are growing rapidly. The rapid rise in

data- centric apps, cloud-based services, and real-

time decision- making has put a huge strain on

infrastructure providers, who are now forced to

optimize performance while still being cost-

effective and scalable. Load balancing in this venue

turn out to be a primary role of distributed

computing architectures. It allows for the smart and

fair allocation of the computational load amongst

various resources such as physical servers, virtual

machines, or decentralized nodes, thus avoiding

resource bottlenecks, guaranteeing high

availability, and improving system responsiveness

overall [1]. Load balancing has gone far beyond

merely performance tuning in ensuring system

resilience during too heavy or unpredictable

workloads, it also reduces downtime and increases

user satisfaction. The development of distributed

computing paradigms has led to a great increase in

complexity to accomplish a satisfactory load

balancing. This is most notably illustrated in various

modern computing ecosystems such as cloud, edge,

fog, grid, and quantum, every one of them bringing

along the whole new set of their own constraints, for

instance, sensitivity, energy consumption, device

heterogeneity, and for quantum systems, they face

the issue of decoherence to name a few. The primary

focus of traditional load balancing algorithms is

centralized environments, and extensive research

has been conducted on them; however, the new

decentralized and hybrid architectures' applicability

to these algorithms is still a matter of ongoing

research. New paradigms require flexible and

context-aware algorithms that can function

economically under changes in network topologies

and resource conditions. It follows that a multi-

faceted approach is necessary for the evaluation of

load balancing strategies, one that not only takes

scheduling decisions into account, but also

architectural dependencies, mobility support, and

scalability factors. This survey intends to offer a

comprehensive bulletin covering the most important

load balancing techniques implemented over five

notable computing paradigms: cloud, edge, fog,

grid, and quantum computing. It lays out a

comprehensive categorization of algorithms, delves

their mechanisms and talks about design ideologies

and measurement of decisions. The article further

carves out a consolidated classification of an

algorithm for the purpose of comparison and it also

points out issues that have been there all along like

problems in interoperability across layers, the trade-

off between energy and performance as well as

scheduling that is dependent on the context. We thus

aspire to provide assistance to scientists and

professionals through this research in not only

conceiving and applying but also adjusting and

personalizing load balancing strategies for

distributed computing in future which is inherently

more diverse [2] a key factor in cloud environments

because it manages the fair distribution of customer

requests among several servers with the goal of

increasing system throughput performance,

reducing latency, and guaranteeing high

availability. Various algorithms are used in cloud-

based load balancing, and each one has its own

advantages and disadvantages depending on the

infrastructure and workload features. a key factor in

cloud environments because it manages the fair

distribution of customer requests among several

servers with the goal of increasing system

throughput Figure 1 shows Cloud Computing

Reference Model

scheduling with context awareness, and the trade-offs between energy and

performance. By bringing together understanding from these different places,

this survey acts as a base for researchers and practitioners who want to

create load balancing strategies that are not only adaptable but also

paradigm-specific, and cross-platform, and that fit into the changing face of

distributed computing.

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 757

Figure 1 Cloud Computing Reference Model

2. Relevance of Load Balancing

In the realm of contemporary distributed computing

environments, load balancing has become an

indispensable instrument for preserving the

integrity of the particular services of the web. As the

number of users increases and applications require

more current responsiveness, computational

infrastructure has to be able to continue to meet

performance standards. Load balancing solves this

problem by intelligently allocating workloads to the

resources available, for example, virtual machines,

physical servers, or edge nodes, so that the resources

are not overused, the response time is lowered, and

the throughput is substantially more improved. For

example, in cloud computing where multitenancy

and on- demand resource provisioning are standard

practices, load balancing guarantees that resources

are distributed evenly among several servers or

clusters and thus, it prevents the overloading of a

particular server or cluster. Besides, this not only

allows the scaling of the system but also assures it

that the highest availability will be maintained and

the service will continue uninterrupted even during

unanticipated traffic peaks or failures in hardware.

And also in edge and fog computing instances,

where the resources become more dispersed and

they are often scarce, efficient load distribution is of

paramount importance to giving services to users

without delay and also keeping the real-time

processing capability intact. Additionally,

containerization and microservices as well as hybrid

deployment models got the more detailed way that

load balancing has to operate so that it could make

the right decisions. When balancing is not good, the

performance of the backend services will be worse,

the user experience will be bad, and the

infrastructure will be more susceptible to a chain

reaction of failures. Hence, effective load balancing

is very crucial for the system to be reliable, the users

to be satisfied, and it will also become a factor in

minimizing the operational costs [3]. Boosted

dependence on electronic means—covering the

areas of electronic commerce, cloud storage, live

health monitoring, and intelligent traffic systems—

has transformed load balancing from just a

performance enhancer to a business-critical

function. This in turn makes the study of load

balancing algorithms over different computing

paradigms not only relevant but also necessary for

the creation of adaptive, robust distributed systems

of the future [4]. Figure 2 shows Cloud Storage.

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 758

Figure 2 Cloud Storage

3. Evolution of Load Balancing Strategies

Load balancing approaches have significantly

changed over time which clearly shows the changes

in the computing world from centralized

mainframes to dramatically distributed and hybrid

infrastructures. Initially, load balancing was a

manual operation that was mostly done by system

administrators using very simple techniques like

static configurations or DNS-based round-robin

methods. These initial techniques were very basic

and operated with limited context-awareness. They

were very effective only in small-scale, mainly

static environments [5]. A big increase in data and

user interactions on the internet has made these

strategies insufficient very easily and they were not

able to maintain system responsiveness and

reliability. When client-server architectures came

about and dynamic web applications became

popular in the late 1990s and early 2000s, they

introduced more advanced software and hardware-

based load balancers. These load balancers were

capable of dynamic resource allocation, running

health checks, session persistence, and SSL

termination, which in turn helped both performance

and fault tolerance. But the fact that these strategies

were centralized still limited them in terms of

scalability and resilience [6]. The emergence of

cloud computing represented a significant milestone

in the design of load balancing strategies.

Virtualization facilitated hardware abstraction and

the dynamic allocation of resources. Load balancing

at hypervisor level became the most popular

method, as it allowed the distribution of workloads

across virtual machines based on real-time resource

utilization metrics such as CPU, memory, and

network I/O [7]. Cloud-native solutions, such as

Amazon ELB, Microsoft Azure Load Balancer, and

Kubernetes Ingress Controllers, started to add

policies that could auto-scale according to

thresholds, thus increasing both the elasticity and

cost-efficiency. Load balancing evolved to fit the

new conditions as the computing has reached fog

and edge nodes besides data centers. In fog

computing, which is located more in the network's

edge, load balancing strategies were latency-aware,

mobility-aware, and energy-efficient, because of the

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 759

geographical distribution and limited resources of

fog nodes [8]. Likewise, edge computing

environments provided a necessity for real-time

decision-making with the least dependence on

central controllers. From here, decentralized and

hierarchical load balancing algorithms came into

being, which could operate by themselves, be

receptive to mobility and connectivity, and trust

their own fault tolerance even in the case of

intermittent network conditions [9]. At the same

time, with the growth of big data and the increase of

AI workloads, special load balancing mechanisms

were necessary for distributed processing

frameworks such as Hadoop, Spark, and

TensorFlow. These systems not only required a

balanced task execution but also had to be aware of

data locality, network topology, and the

heterogeneity of computing nodes [10]. The

quantum computing field has opened up new

opportunities for load balancing scientists. Unlike

classical systems, quantum computing uses qubits

that are highly vulnerable to decoherence and have

only a few physical resources available. Hence, load

balancing should solve problems resulting from the

limited circuit depth, connectivity of qubits, and the

combining of classical and quantum parts during

orchestration. Research in the initial stages of

productivity is relating to task division between

classical and quantum components, job scheduling

for quantum hardware, and also necessitating

implementing of error during the experiment [11].

Considering that quantum computers are moving

from the NISQ devices to fault-tolerant ones, the

matter of load balancing will greatly influence both

the production rate and resource utilization to be

efficient. The progression of load balancing

techniques has reflected a shift to greater

decentralization, environmental sensitivity, and

targeted efficiency. The advent of novel computing

paradigms such as serverless, federated learning,

and quantum-cloud integrations has only served to

broaden the reach of load balancing. Here, load

balancing will have to go beyond being just reliable,

it will have to incorporate more flexible, smarter,

and compatible agents capable of performing

seamlessly across the diverse and mixed systems.

4. Load Balancers in Cloud Environments
With the cloud computing paradigm, the

provisioning of computational resources has

changed beyond recognition through the use of

scalable and on-demand services. Load balancing is

a key factor in cloud environments because it

manages the fair distribution of customer requests

among several servers with the goal of increasing

system throughput performance, reducing latency,

and guaranteeing high availability. Various

algorithms are used in cloud-based load balancing,

and each one has its own advantages and

disadvantages depending on the infrastructure and

workload features. Figure 3 shows Cloud Simulator

4.1. Round Robin Algorithm

Figure 3 Cloud Simulator

One of the earliest and simplest algorithms that

Round Robin was used for load balancing because

of its deterministic character and easy

implementation. It distributes requests to a series of

servers in a round-robin fashion. After the last

server in the list receives a request, the process is

repeated for the first server and so on. This cyclic

nature of the process guarantees that over time, each

server will receive an equal number of incoming

requests. On the other hand, Round Robin considers

that all servers are of equal capacity and the load

generated by the requests is of equal weight, which

rarely happens in actual cloud environments.

Differences in server processing power, current

load, or task complexity can lead to imbalanced

distribution and longer queue times for certain

servers [12]. Due to its simplicity, Round Robin

may, however, become ineffective in heterogeneous

environments where server capabilities and

workloads differ significantly [13].

4.2. Least Connections Algorithm

The Least Connections algorithm provides a more

dynamic approach by taking into account the load

on each server in real- time. It does not distribute

requests randomly but routes each new request to a

server that has the smallest number of active

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 760

connections at that moment. This is especially

suitable to instances with continuous sessions as in

video streaming, database transactions, or stateful

web sessions. This flexible trait allows for a more

balanced load and increases response times,

particularly in cases where there are different

durations for processing requests. The algorithm,

though, still needs to keep track of all open

connections, which may lead to extra work being

done [14]. This approach is more efficient in

systems with uneven workloads and also helps

scalability by not overloading any single node. [15]

Figure 4 shows Load transfer strategy

Figure 4 Load Transfer Strategy

4.3. Weighted Round Robin
Weighted Round Robin (WRR) takes the basic

Round Robin protocol a step further by

incorporating weights which enable the non-

uniform distribution based on the server's abilities.

Servers are given a weight value which is

proportional to their computing power (CPU, RAM,

network bandwidth). The algorithm's main idea is

that more powerful servers are given a bigger

portion of the incoming requests, thus resource

usage is consistent with server capacity. Thus, for

instance, a server with a weight of 3 will get three

times as many requests as a server with a weight of

1. The WRR algorithm walks the server list over and

over while going each server as many times as its

weight, resulting in proportional load distribution in

heterogeneous environments [16]. Such a method is

the most efficient for the case of cloud platforms

with heterogeneous server instances and it also

gives a guarantee for better performance by

decreasing the response time and not causing the

server to be overloaded [17]. The proportional

distribution of requests in Weighted Round Robin

can be mathematically expressed as:

 Rᵢ = (Wᵢ / ΣWⱼ) × T

Where:

 Rᵢ = Number of requests assigned to server

i

 Wᵢ = Weight of server i

 ΣWⱼ = Sum of weights of all n servers (j =

1 to n)

T = Total number of incoming requests in one cycle

This equation ensures that servers with higher

capacities receive a proportionally greater share of

the workload, thus optimizing system performance

in heterogeneous cloud environments [18].

4.4. Load Balancers in Edge Computing

With the rapid shift of computing power from a data

center to a data source for ultra-low latency and real-

time processing, edge computing has become a

paradigm-shift mechanism in the most recent

distributed systems. The edge environment, which

is at the opposite end of the spectrum from

centralized cloud infrastructures, carries features

like decentralization, spatial dispersion, and

resource limitations. The nature of these systems is

latency-sensitive applications such as real-time

video analytics, autonomous vehicles, industrial

IoT, and wearable health monitors. So in this case,

the role of load balancing is essential not only for

safeguarding the fair distribution of resources but

also for providing the necessary service continuity

in the case of user mobility and heterogeneous edge

node capabilities. The characteristics of edge

environments that make them tiny, short-lived, and

volatile mean that conventional methods of

balancing load cannot meet the situations.

Consequently, algorithms written for edge require

load balancing, with the potential to carry out the

real-time monitoring of the current situational

conditions and decentralized decision-making, and

to be able to respond rapidly to changes in the

environment. Here, we explore the three most

common load balancing protocols that are usually

followed in edge ecosystems.

4.5. Edgecloudsim Dynamic Algorithm

EdgeCloudSim is the simulation toolkit built upon

the CloudSim platform. This is a simulation

environment primarily targeting the emulation of

edge computing scenarios. Specifically, the

integration of dynamic load balancing methods is

one of its principal contributions that constantly

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 761

gather input from the environment such as server

status, users movement, and network fluctuation

throughout the process. In EdgeCloudSim's

algorithmic model, the decisions are not fixed but

rather changes are implemented dynamically while

the mobile users are moving from one location to

another or if the edge servers are unreachable for

some time. The system redirects the requests to the

best available nodes in real-time, thus not only

eliminating service handoff delays but also

extending the task execution without interruption

and increasing the network's overall response speed.

Such features are especially necessary in the cases

of vehicular communication systems, healthcare

monitoring, and mobile video surveillance, where a

delay in the task allocation may cause the service to

fail or important data to be lost [19].

4.6. Resource Aware Scheduling

Resource-Aware Scheduling (RAS) is a real-time

metric that gets its data from the edge nodes and

takes note of the CPU usage, free memory, and

network throughput. However, RAS, which is a

dynamic decision-making strategy, makes use of

resource profiling of nodes periodically to pick the

best candidate for a certain task, whereas static ones

make only the initial assignment without subsequent

evaluation. The scheduler always keeps track of

node status and makes sure that it distributes the

tasks that come in among those nodes, which can

process them efficiently and do not cause resource

overutilization or service bottlenecks due to the high

workload. Such a scheme certainly guarantees that

low-power or already heavily-loaded devices will

not be part of the process and thus will not

contribute to an increase in the failure rate, even

though they still have some unused resources. RAS

is a very efficient method in conditions in which the

edge devices are of different types and the workload

is changing in an unpredictable manner. In addition,

it enables power saving, which is very important in

battery-operated edge systems. Experimental works

have demonstrated RAS is able to remarkably

improve both Quality of Service (QoS) and system

resilience while load changes occur [20]. Figure 5

shows Mobile Edge Computing

Figure 5 Mobile Edge Computing

4.7. Mec Proximity Algorithm

In the MEC realm, proximity is a major factor in

load balancing thus the location and the distance to

the user are the main factors that decide where the

task is to be launched. The Proximity- Aware Load

Balancing Algorithm in MEC, which is an

algorithm loaded with the graph of the local state of

resources of all machines in a cluster, primarily

aims at routing tasks to the edge server that is

physically closest to the user. This method outlines

the basis for ultra-low-latency applications such as

augmented reality, remote surgery, and autonomous

vehicles where every millisecond counts. The

proximity selection logic is not a purely distance-

based one but it also takes into account network

congestion and node workload which is done in the

same way as performance improvement that is more

holistic. The proximity function is generally given

by the following expression:

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 762

P (u, e) = α · d (u, e) + β · L(e)

Where:

 P (u, e) is the proximity cost of assigning

user u to edge server e.

 D (u, e) represents the network distance

(e.g., latency or hop count) between user u

and server e.

 L(e) is the current load on edge server e,

which may include processing, bandwidth,

or memory usage.

 α and β are weighting coefficients to

balance the importance of distance vs.

load. [21]

This function ensures that the task is allocated to the

most optimal edge node by balancing distance and

real-time performance metrics. The proximity table

is continuously updated to adapt to node failures or

mobility events, maintaining system responsiveness

and robustness. Figure 6 shows MEC Algorithm

Figure 6 MEC Algorithm

5. Load Balancers in Fog Computing

Fog computing depicts a decentralized computing

model that is intended to carry out and analyze data

locally near the source of its generation, such as

sensors, wearables, and embedded systems. In

contrast to conventional cloud systems, fog

environments are known by their geographic

spread, low latency requirements, mobility, and

resource restrictions. load balancing in such a case

becomes a very important issue because of the

diversity of fog nodes, limited processing and

storage capacity, as well as the real-time nature of

the applications they support. Since fog computing

provides a link between the cloud and the edge, it

has to manage the computational workloads in the

most efficient way in order to keep the system

responsive, minimize latency, and get rid of

resource bottlenecks. Load balancing in fog

computing environments needs context-aware,

adaptive, and energy-saving strategies that are

capable of responding to unpredictable changes in

user requests, network dynamics, and node

availability. Below are some of the most effective

strategies employed in fog computing.

5.1. Adaptive Load Balancing (ALB)

Adaptive Load Balancing is a reactive and self-

governing approach that reflects in real-time the

alterations of workload distribution and node

availability. ALB algorithms, which are dynamic,

can redistribute tasks following network parameters

that vary, e.g., CPU utilization, memory usage,

bandwidth availability, and service latency, as

opposed to static ones. This method is especially

relevant in fog systems where nodes can appear and

disappear without warning, or where the usage

changes significantly during the day. Modern ALB

techniques are blending predictive models to

envision that resource congestion which has not yet

happened but is on its way. The predictive models

typically use past data and learning-based

approaches like regression, time-series forecasting,

and decision trees. In addition, the system keeps on

improving its distribution of the load by making

better decisions based on the current feedback. The

efficiency of ALB has been proven in transportation

which is smart, surveillance that is real-time, and

automation of industries implementation examples

[22], [23]. In addition, ALB aligns quite well with

the concept of fog computing on the mobile.

Properties of vehicular fog computing, for instance,

include devices that are constantly moving, lack of

leaders, and fluctuating connectivity as a result of

mobility. Adaptability in situations like these is not

only a plus but a requirement to guarantee the

continuity of service and lower the number of tasks

that are not accepted [24].

5.2. Fuzzy Logic-Based Scheduling

Conventional binary decision-making approaches

come up short in fog environments owing to

uncertainty in resource availability and workload

predictability. Fuzzy logic-based scheduling is a

probabilistic model that simulates human-like

decisions, and it supports the making of more

flexible balancing of load. In place of considering

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 763

input parameters as definitely high or low, fuzzy

systems decide them on a continuum by employing

linguistic variables like "lightly loaded,"

"moderately loaded," or "heavily loaded."

Ultimately, the fuzzy logic system goes over those

rules and then decides the optimal task-to-node

assignment. For example, if we find some node

whose CPU usage is "medium" and at the same

time, its memory usage is "low," a scheduler might

conclude that the node is free and thus can be given

more tasks. Such an approach makes fog

infrastructure scheduling much more intelligent in

the situation when so many resources have to be

assessed simultaneously, although the condition of

those resources is not very certain and they are in a

hurry. They have demonstrated remarkable success

in cases such as tracking of circumstances in nature,

health-related IoT, and the quick reaction of

emergencies, because of the speed requirements and

the lack of certainty in the operating conditions.

Resources which are innately constrained in

computation, coupled with fog nodes that do not

rely on the heavy computational models, fit best

with the ways these systems deal with imprecision

of information perfectly.

5.3. Energy-Aware Load Balancing

Energy efficiency is becoming a focal point in fog

computing, notably as fog nodes are often installed

in settings with limited power such as remote

locations, sensor networks, and urban IoT

configurations. Energy-aware load balancing

targets the efficient allocation of tasks that considers

not just resource capacity but also the energy

consumption characteristics of the nodes. The

purpose of these algorithms is to achieve the lowest

possible energy usage in the fog network and at the

same time guarantee the best performance levels.

They do so by assigning tasks preferentially to

nodes that either are of low energy consumption or

that are powered by renewable energy sources.

Various methods adhere to the inclusion of the

thermals and battery conditions of the nodes in the

decision procedure so that the nodes get the correct

level of energy usage and no energy is wasted.

Besides this, energy-efficient balancing can result in

savings that go beyond just energy. Besides

extending the life of the appliances, it lowers

running costs, and also makes a contribution to

sustainability targets, which are indispensable for

big IoT implementation such as smart cities,

agricultural monitoring, and disaster management

systems [26]. In a study reported recently, in

addition to that, such strategies are combined with

work capacity prediction prototypes so that tasks

can be scheduled in advance during low-energy

consumption times, or only a part of fog nodes can

be activated during off-peak hours, thus still

meeting QoS requirements and simultaneously

saving energy. In the global shift towards

environmentally friendly computing paradigms,

energy-aware load balancing remains a crucial

pathway for future fog computing developments

[23], [26].

6. Load Balancers in Grid Computing

Grid computing is one of the models for distributed

computing which aggregates the geographically

distributed and heterogeneous resources—ranging

from the processing units and the storage to the

software services, to work as a single system for

solving complicated scientific, academic, and

industrial problems. These resources are really quite

different and they may come from various

administrative domains and could vary very much

in availability, capability, and reliability.

Consequently, effective load balancing in grid

computing is indispensable to ensure optimal

utilization, reduce job turnaround time, and

maintain service reliability. A decentralized and

intelligent scheduling approach, different from the

centralized cloud perspectives that governs grid

environments, is needed in grid systems. Such a

mechanism would enable these systems to keep

track and dynamically adjust during the changing

conditions of load, node availability, and the intake

of application requirements. Two of the most

popular load balancing techniques that have been

proven as effective in grid computing are those

which employ Genetic Algorithm, Ant Colony

Optimization, and Min-min Scheduling as the base.

In addition to dealing with the diversity and spread

of the grid resources, the algorithms also provide

scalability, fault tolerance, as well as more efficient

performance for all nodes.

6.1. Genetic Algorithm- Based Load

Balancing

Genetic Algorithm (GA) is a class of stochastic

search procedure which are inspired by natural

selection and meiosis. GAs are well suited for

tackling NP-complete problems efficiently if these

problems can be translated to the form of scheduling

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 764

and resource allocation in grid infrastructure

characteristics. The major principle of GA-based

load balancing is to iteratively generate new

populations of candidate solutions (chromosomes)

in the hope of finding the minimum or maximum of

an objective, usually corresponding to time, load

variance, or cost if the algorithm is implemented as

a minimization or maximization problem

respectively. Here, each chromosome represents a

possible configuration of the tasks assigned to the

computational nodes. The algorithm then continues

with the following genetic operations:

 Selection: Taking the fittest individuals

(task-resource mappings) based on a certain

fitness function, which can be made up of

parameters like makespan (total time to

execute all tasks), load balance index, or

network delay.

 Crossover: Merging pairs of chromosomes

in order to create new offspring that have the

traits of both parents.

 Mutation: Giving offspring some random

changes to keep genetic diversity and not get

stuck at a local optimum.

 A popular fitness function is given by the

equation:

 Fitness = 1 / Makespan

Here:

a) Makespan is the longest time of completion

among all the resources.

b) We want to get the smallest makespan,

which is equivalent to the highest fitness.

Genetic Algorithm (GA)-based scheduling has been

proven to produce better outcomes than

conventional heuristics. It is especially useful in

large-scale grid systems where the search space for

optimal solutions is enormous. This technique is

especially suitable in coping with non-deterministic

behavior, multi-objective constraints, and dynamic

workloads [27], [28].

6.2. Ant Colony Optimization (ACO)

ACO is a population-based metaheuristic that aims

to mimic social insects' behavior in finding shortest

paths to food sources. The ants perform such tasks

as searching and foraging out of exploration and

exploitation of previously found routes. This

behavior complicates the understanding of the task

of grid load balancing, where tasks that arrive

dynamically could be assigned simulatenously to

the different nodes as we traverse along the various

paths in the solution space, with each path to a

certain redirecting of the tasks to the nodes.

The concept is that every ant takes a tiny part of the

total effort sampling a task, choosing the current

best decision, constructing a solution, and

committing it incrementally.

 Pheromone Trails: Chemical signals left

by ants showing them the direction to follow

to find the optimal food source.

 Heuristic Information: Such as the size of

the task, the CPU speed, the length of the

queue, and the bandwidth.

Solutions that are good become more attractive to

other ants over time, resulting in a kind of runway

effect where new ants keep following the recent and

best solution. ACO allows the nodes in the system

to act independently and coordinate with each other

as they work on the problem, which is beneficial in

a grid computing environment where nodes might

be difficult to reach, fail, or change their state

without any warning. ACO has found effective use

in scientific workflows, climate modeling, and

genome analysis, where it has provided more equal

load distribution, higher fault tolerance, and lower

overall execution time than deterministic algorithms

[29], [30]. Figure 7 shows Ant Colony Optimization

Figure 7 Ant Colony Optimization

6.3. Min-Min Scheduling Algorithm

The Min-Min algorithm is a deterministic

scheduling heuristic that is characterized by its

simplicity and speed. It operates by finding a task-

resource pair such that the task with the minimum

earliest completion time is scheduled first. The

process can be formulated as follows:

 For every task that is not yet scheduled, find

the earliest completion time (ECT) on every

resource.

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 765

 Choose the task with the minimum of

overall ECT.

 Give the task to the resource which

corresponds to that and indicate the task as

done.

 Do it again till all the tasks have been given.

The algorithm takes advantage of the greedy

strategy of picking up small jobs first and thus it

ensures that those resources which work faster are

not blocked unnecessarily by big jobs. This is often

beneficial since it yields higher throughput and

better system utilization in environments where the

major part of workload is composed of small to

medium jobs. The Min-Min method caused the

problem of starvation of the big tasks in some

situations, but it is preferred by many people since

it is easy to implement. It has minimal overhead and

is suitable for time-sensitive grid applications such

as multimedia rendering, medical diagnostics, and

distributed data analysis [31], [32] because of its

straightforwardness and low overhead.

7. Load Balancers in Quantum Computing

Quantum computing prominently showcases a new

facet of computational science, where information

is processed by qubits, quantum bits that utilize the

principles of superposition, entanglement, and

quantum tunneling. The latter features, make

quantum computers exponentially more powerful

compared to classical machines in particular areas

like cryptography, optimization, and running

simulations of complex systems. However, on the

other side of the coin, resource management and

task scheduling in quantum computing are

demanding jobs, thus load balancing, a key factor,

has to cope with not only quantum-specific

limitations but also the synergy with classical

systems. To load balancing in normal computing,

algorithms are employed that can be either

deterministic or probabilistic is traditional

computing, whereas in quantum computing, native

quantum scheduling models, which can utilize the

non-classical behaviors of machines, are available

to find solutions for resource allocation and work

distribution problems in a more efficient manner.

Quantum computing is on the rise cloud- based

quantum processors (e.g., IBM Q, D-Wave, and

Google Sycamore) will explode, practical and smart

load balancing will be crucial in keeping the

integrity of the performance, lowering

communication latency, and optimizing quantum

resource utilization.

7.1. Quantum Entanglement- Based

Scheduling

Quantum entanglement is a really abnormal

phenomenon when the states of not one or two but

multiple qubits become so interdependent that if

you change one it will affect the others immediately

even if they are in different places. When it comes

to distributed quantum computing, this feature is the

one that is used to keep the task assignments and the

synchronizing of the resources in the same state, as

if the communication overhead were not there. In

Quantum Entanglement-Based Scheduling, the task

qubits get entangled with resource qubits. When a

qubit is used for a task, the entangled partner qubit

auto-magically reflects the same assignment, thus,

the scheduling decision is communicated in an

instant all over the quantum system without any

delay. This method can be especially advantageous

in quantum cloud systems where entangled qubits

are being distributed among quantum nodes located

at different places. Such entanglement-driven

synchronization eliminates classical bottlenecks

like:

 Delays due to message passing.

 Task queuing inconsistencies.

 Resource idling due to communication

latency.

Though still mostly theoretical and hindered by the

limitations of practical implementation (i.e.,

decoherence, error correction), this kind of load

balancing may become crucial with quantum

interconnects' advancement [33], [34].

7.2. Grover-Based Search Load Balancer

Grover’s algorithm is a quantum search algorithm

that is most famous for its ability to find an element

in an unsorted database of N elements in about

O(N), O(√N), O(N) time, thus providing a quadratic

speedup over classical linear search methods. If we

consider the load balancing scenario, the problem of

assigning the best resource to a certain job can be

seen as a search problem, where the scheduler needs

to find an optimal match from a set of possible task-

resource pairings. Grover’s algorithm is intended to:

 Choose a node that satisfies given latency or

capability requirements.

 Make scheduling decisions that are based on

the cost function evaluated through

quantum.

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 766

 Find the resource that has the least load.

This method comprises quantum state initialization,

oracle evaluation (which marks the desirable

resource), and amplitude amplification to enhance

the probability of picking the best node. Only a few

steps are involved when a quantum-based scheduler

interdisciplinarity mergers with classical processing

units since that enables the fast reduction of the best

candidates for task execution [35], [36]. The load

balancing system that is based on Grover is also

scalable over cloud platforms. In fact, those who can

provide quantum as a service (QaaS) will be able to

avail themselves of this new technology to optimize

the load at distributed quantum cores in real-time.

Figure 8 shows Quantum Annealing

Figure 8 Quantum Annealing

7.3. Quantum Annealing for Load

Optimization

Quantum annealing is a

metaheuristic approach for optimization

problems that use quantum fluctuations rather than

classical thermal noise. The main idea is that the

problem (here, load balancing) is converted into a

quadratic unconstrained binary optimization

(QUBO) or an Ising model, where every

configuration of task-resource assignment is an

energy level. The goal is to get a configuration (i.e.,

task distribution) that reduces the total energy of the

system the most or, in other words, ensures load

balance. Quantum annealers like the D-Wave

systems can make use of quantum tunneling to

venture through the solution space, thus, they can

smoothly go beyond local minima and reach the

global optimal solution faster. The approach is a

good fit for:

 Highly dimensional constrains that define

complex load balancing problems.

 Sharing of resources between the quantum

and classical parts of a hybrid network.

 Situations, wherein it is necessary to

optimize in real- time under changing

workloads.

Examples of objective functions that might be

employed by quantum annealing for load balancing

can be:

a) Execution time variances at different

nodes.

b) Power consumption.

c) Maximum permissible delays.

d) Ensuring no workload gets left behind

when sharing resources.

Quantum annealing is gaining traction in the data

center scheduling, IoT traffic control, and quantum-

aware HPC clusters [37], [38]. Studies go on in the

sense of enlarging the working space of annealers

so as to be able to allocate the load in real time as

the quantum hardware becomes mature. Figure 8

shows Quantum Annealing

Figure 8 Quantum Annealing

Conclusion

Load balancing has been completely reinvented

after several years that it has gone from simple static

models to much more context-aware, intelligent and

quantum-enhanced models. This survey has delved

into load balancing methods in five different,

though interconnected, computing paradigms -

cloud, edge, fog, grid, and quantum computing.

Each computing paradigm has its own specific

architectonic limitations, operational targets, and

performance issues that require custom-tailored

balancing techniques suitable for their distinctive

characters. The three Round Robin-based load

balancing methods of Round Robin, Least

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 767

Connections, and Weighted Round Robin are the

simplest mechanisms that form the foundation of

the balancing of resources in cloud computing

where the key characteristics are scalability,

elasticity, and resource abstraction. However, with

the increasing heterogeneity of cloud workloads and

the need for low latency, the traditional approaches

tend to take a back seat, and there is a requirement

to integrate various monitoring and profiling

techniques for real-time responsiveness and system

throughput to be maintained. In the case of edge

computing, the goal is to reduce the processing

delay of data that is passing through the peripherals

of the network, and therefore, it sets the parameters

of the load balancing task as highly local and

context-driven. The dynamic algorithms that are

implemented in simulators like EdgeCloudSim,

schedulers that are resource-aware, and methods

based on proximity, such as those in MEC networks,

are examples of the way that load balancing at the

edge should be able to take into consideration the

user that is moving around, the limited computing

power, and the changing network conditions. Fog is

seen as both a layer of resources from the cloud and

the edge. The fog layer is the nature of the low-

latency and energy- conscious load balancers. ALB

technique, the scheduling method based on fuzzy

logic, and energy-efficient algorithms are the

greatest contributors to the application of energy-

saving methods along with latency in the context of

distributed and resource-limited fog nodes. These

methods are especially significant for IoT to support

its scalability and sustainability since it has been

thought that real-time decision- making and power-

consumption are the most essential factors in this

ecosystem. Metaheuristic-based methods like

Genetic Algorithms (GA), Ant Colony

Optimization (ACO), and heuristic basics such as

Min-Min scheduling have been reported in various

research studies to be effective solutions to handle

load balancing in the grid computing paradigm. It is

essential to understand that these algorithms are

capable of distributing the workload in a

combinatorial manner and simultaneously taking

various factors into account, including the execution

time, availability of resources, and the

communication overhead. Such new quantum

computer architectures radically redefine the

dimensions of computation and with that, the

principles of work redistribution also change.

Transfer of information through quantum entangled

states allows for an almost instantaneous setting of

task assignments, as one of the fastest quantum

algorithms, Grover's algorithm, offers a rapid search

of an optimal schedule. By utilizing phenomena like

quantum tunneling, quantum annealing can open a

fresh route to high- dimensional load optimization

problems. The future may open to quantum

capabilities where load balancing is no longer

constrained by traditional computation boundaries,

but rather given a new dimension by the quantum.

The main point of the research is that it is not

possible to find a universal solution for load

balancing. The working conditions of different

paradigms vary significantly and all of the

contextual characteristics must be taken into

account if work distribution efficiency is to be

achieved. The nearest roadmap for the future of

work distribution leads to hybrid, context- aware

architectures that include the best of various

approaches (rules, machine learning, and quantum-

inspired optimization) in unified and autonomous

units. The systems will require making inductive

decisions relying on entirely static characteristics,

as well as dynamic and predictive analytics, with

behavioral patterns, energy limitations, mobility,

and data locality being some of the variables

analyzed. In addition to that, AI and RL are set to

become game changers in the creation of

independently operating load balancers that can

carry out perpetual self-improvement. The

combining of AI and quantum computing has a

potential to bring about quantum- accelerated

learning models that can decide the scheduling in

real-time. Collaborative load balancing across

nodes could become a reality, with the help of

federated and decentralized learning models, while

the privacy of data is still maintained. In conclusion,

the domain of load balancing is changing from a

focus on systems to a multidisciplinary area dealing

with distributed systems, AI, quantum physics, and

energy-efficient computing. As computer

paradigms keep changing, the creation of smart,

reliable, and scalable load balancing systems will

play a crucial role in allowing resilient, adaptable,

and green future computing infrastructures.

Acknowledgements

The authors extend their heartfelt gratitude to Dr.

Pradeep S for his invaluable guidance, continuous

support, and mentorship throughout the course of

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 768

this research. With over 15 years of experience in

academia and research, his insights and expertise

significantly enriched the quality and direction of

this work. The authors also appreciate the support

and encouragement received from peers and

collaborators during the development of this paper.

References

[1]. Zhang, Q., Cheng, L., & Boutaba, R. (2010).

Cloud computing: State-of-the-art and

research challenges. Journal of Internet

Services and Applications, 1(1), 7–18.

https://doi.org/10.1007/s13174-010-0007-6

[2]. Beigi-Mohammadi, N., Ghobaei-Arani, M.,

& Souri, A. (2022). A comprehensive

survey on fog computing: State-of-the-art

and research challenges. Journal of Systems

Architecture, 122, 102372. https:// doi.org/

10.1016/j.sysarc.2021.102372

[3]. Buyya, R., Broberg, J., & Goscinski, A.

(Eds.). (2011). Cloud computing: Principles

and paradigms. Wiley.

[4]. Abbas, N., Zhang, Y., Taherkordi, A., &

Skeie, T. (2018). Mobile edge computing: A

survey. IEEE Internet of Things Journal,

5(1), 450–465. https:// doi.org/ 10.1109/

JIOT.2017.2750180

[5]. Mitzenmacher, M. (2001). The power of two

choices in randomized load balancing. IEEE

Transactions on Parallel and Distributed

Systems, 12(10), 1094–1104. https://

doi.org/10.1109/71.963420

[6]. Zhang, Z., Chen, L., Chen, J., & Hu, X.

(2013). A load balancing mechanism based

on ant colony and complex network theory

in open cloud computing federation. The

Journal of Supercomputing, 63(2), 538–560.

https://doi.org/10.1007/s11227-012-0817-2

[7]. Jennings, B., & Stadler, R. (2015). Resource

management in clouds: Survey and research

challenges. Journal of Network and Systems

Management, 23(3), 567–619. https://

doi.org/10.1007/s10922-014-9307-7

[8]. Aazam, M., & Huh, E.-N. (2014). Fog

computing and smart gateway based

communication for cloud of things. In 2014

IEEE International Conference on Future

Internet of Things and Cloud (pp. 464–470).

IEEE. https:// doi.org/ 10.1109/

FiCloud.2014.83

[9]. Deng, S., Zhao, H., Fang, W., Yin, J.,

Dustdar, S., & Zomaya, A. Y. (2020). Edge

intelligence: The confluence of edge

computing and artificial intelligence. IEEE

Internet of Things Journal, 7(8), 7457–7469.

https://doi.org/10.1109/JIOT.2020.2984887

[10]. Ghosh, S., Banerjee, S., & Mandal, S.

(2017). An energy-efficient data locality-

aware load balancing strategy for Hadoop.

Concurrency and Computation: Practice and

Experience, 29(17), e4144. https:// doi.org/

10.1002/cpe.4144

[11]. Das, P., Chakrabarti, S., Debnath, B.,

Mandal, S., & Ghosh, S. (2022). A survey

on classical and quantum resource

management in hybrid quantum-classical

computing systems. ACM Computing

Surveys, 55(1), 1–36. https:// doi.org/

10.1145/3490236

[12]. Hwang, J., Choi, S., & Kim, S. (2016). Load

balancing in cloud computing: A state of the

art survey. Journal of Network and

Computer Applications, 73, 48–65.

https://doi.org/10.1016/j.jnca.2016.08.007

[13]. Khiyaita, S. A., Zbakh, M., Moussaoui, O.,

& El Omri, A. (2012). Load balancing cloud

computing: State of art. In National Days of

Network Security and Systems (JNS2) (pp.

106–109). IEEE.

[14]. Kokilavani, T., & Amalarethinam, D. I. G.

(2011). Load balanced min-min algorithm

for static meta-task scheduling in grid

computing. International Journal of

Computer Applications, 20(2), 43–49.

https://doi.org/10.5120/2432-3256

[15]. Beloglazov, A., Abawajy, J., & Buyya, R.

(2012). Energy-aware resource allocation

heuristics for efficient management of data

centers for cloud computing. Future

Generation Computer Systems, 28(5), 755–

768. https:/ /doi.org/ 10.1016/ j. future.

2011.04.017

[16]. Wu, L., Li, X., Zhang, L., & Liang, J.

(2015). A hierarchical weighted round robin

algorithm for load balancing in cloud

computing. In 2015 International

Conference on Smart City and Systems

Engineering (pp. 159–162). IEEE.

https://doi.org/10.1109/ICSCSE.2015.52

[17]. Mishra, M., & Sahoo, A. (2018). On theory

of VM placement: Anomalies in existing

methodologies and their mitigation using a

novel vector based approach. IEEE

Suma Surasingh et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 769

Transactions on Cloud Computing, 6(1),

41–54. https:// doi.org/ 10.1109/ TCC.

2015.2400462

[18]. Verma, A., Ahuja, P., & Neogi, A. (2008).

pMapper: Power and migration cost aware

application placement in virtualized

systems. In Middleware 2008 (pp. 243–

264). Springer. https://doi.org/10.1007/978-

3-540-89856-6_13

[19]. Sonmez, A., Ozgovde, A., & Ersoy, C.

(2018). EdgeCloudSim: An environment for

performance evaluation of edge computing

systems. Transactions on Emerging

Telecommunications Technologies, 29(11),

e3493. https://doi.org/10.1002/ett.3493

[20]. Mao, Y., You, C., Zhang, J., Huang, K., &

Letaief, K. B. (2017). A survey on mobile

edge computing: The communication

perspective. IEEE Communications Surveys

& Tutorials, 19(4), 2322–2358. https://

doi.org/10.1109/COMST.2017.2745201

[21]. Mach, P., & Becvar, Z. (2017). Mobile edge

computing: A survey on architecture and

computation offloading. IEEE

Communications Surveys & Tutorials,

19(3), 1628–1656. https:// doi.org/ 10.1109/

COMST.2017.2682318

[22]. Baccarelli, E., Naranjo, P. G. V., Scarpiniti,

M., Shojafar, M., & Abawajy, J. H. (2017).

Fog of everything: Energy-efficient

networked computing architectures,

research challenges, and a case study. IEEE

Access, 5, 9882–9910. https:// doi.org/

10.1109/ACCESS.2017.2705630

[23]. Varghese, B., & Buyya, R. (2018). Next

generation cloud computing: New trends

and research directions. Future Generation

Computer Systems, 79, 849–861.

https://doi.org/10.1016/j.future.2017.09.020

[24]. Chiang, M., & Zhang, T. (2016). Fog and

IoT: An overview of research opportunities.

IEEE Internet of Things Journal, 3(6), 854–

864. https:// doi.org/ 10.1109/ JIOT.

2016.2584538

[25]. Deng, R., Lu, R., Lai, C., Luan, T. H., &

Liang, H. (2016). Optimal workload

allocation in fog–cloud computing toward

balanced delay and power consumption.

IEEE Internet of Things Journal, 3(6), 1171–

1181. https:// doi.org/ 10.1109/ JIOT.

2016.2565516

[26]. Sarkar, S., & Misra, S. (2016). Theoretical

modelling of fog computing: A green

computing paradigm to support IoT

applications. IET Networks, 5(2), 23–29.

https://doi.org/10.1049/iet-net.2015.0034

[27]. Abraham, A., Buyya, R., & Nath, B. (2000).

Nature’s heuristics for scheduling jobs on

computational grids. In Proceedings of the

8th IEEE International Conference on

Advanced Computing and Communications

(ADCOM) (pp. 45–52). IEEE.

https://doi.org/10.1109/ADCOM.2000.917

757

[28]. Tiwari, A., & Singh, R. K. (2015). A genetic

algorithm based efficient load balancing

technique for grid computing. International

Journal of Computer Applications, 122(3),

1–5. https://doi.org/10.5120/21758-5006

[29]. Dorigo, M., & Stützle, T. (2004). Ant colony

optimization. MIT Press.

[30]. Dutta, A., & Sharma, A. K. (2020). Ant

colony optimization based task scheduling

and load balancing in cloud computing.

Procedia Computer Science, 167, 2360–

2369. https:// doi.org/ 10.1016/ j.procs.

2020.03.288

[31]. Casanova, H., Legrand, A., & Quinson, M.

(2008). SimGrid: A generic framework for

large-scale distributed experiments. In 2008

10th IEEE International Conference on

Computer Modeling and Simulation (pp.

126–131). IEEE. https:// doi.org/ 10.1109/

UKSIM.2008.27

[32]. Krishna, D. G. A., & Rao, A. S. (2009).

Comparative study of min-min, max-min

and sufferage scheduling algorithms in grid

computing. International Journal of

Computer Science and Network Security,

9(5), 106–112.

[33]. Nielsen, M. A., & Chuang, I. L. (2010).

Quantum computation and quantum

information. Cambridge University Press.

[34]. Pirandola, S., Eisert, J., Weedbrook, C.,

Furusawa, A., & Braunstein, S. L. (2015).

Advances in quantum teleportation. Nature

Photonics, 9(10), 641–652. https:// doi.org/

10.1038/nphoton.2015.154

Balancing the Load in a Multi-Paradigm Era: A Comprehensive Survey of Algorithms 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 770

[35]. Grover, L. K. (1996). A fast quantum

mechanical algorithm for database search. In

Proceedings of the 28th Annual ACM

Symposium on Theory of Computing (pp.

212–219). ACM. https:// doi.org/ 10.1145/

237814.237866

[36]. Tullsen, D. M., & Frank, M. P. (2022).

Quantum-assisted load balancing for high-

performance computing systems. IEEE

Transactions on Quantum Engineering, 3,

1–9. https:// doi.org/ 10.1109/ TQE. 2022.

3152470

[37]. Benedetti, M., Realpe-Gomez, J., Perdomo-

Ortiz, A., & Perdomo, O. (2019). A

generative modeling approach for

benchmarking and training shallow

quantum circuits. npj Quantum Information,

5(1), 45. https://doi.org/10.1038/s41534-

019-0157-8

[38]. Lucas, A. (2014). Ising formulations of

many NP problems. Frontiers in Physics, 2,

5. https://doi.org/10.3389/fphy.2014.00005

