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Load balancing is a pivotal facet of distributed computing systems that 

significantly influences the performance of the system by achieving optimal 

resource utilization, reduced response time, and enhanced system reliability 

through the even distribution of workloads to computing nodes. The rate at 

which the computing paradigms are changing has resulted in the increased 

complexity of the load balancing problem, which is evident in the cloud, fog, 

edge, grid, and quantum computing since they are particularly characterized 

by the issues of latency sensitivity, energy efficiency, heterogeneity, 

scalability, and quantum decoherence. This paper surveys load balancing 

algorithms implemented in the five computing paradigms, highlighting the 

main operating principles, architectural differences, scheduling strategies, 

and performance evaluation criteria applicable to each context. The cloud 

computing section is devoted to the classification of static and dynamic 

algorithms, and we also touch on the weighted round-robin, honeybee 

foraging, and VM migration strategies. The paper also surveys the load 

balancing of the fog and edge computing wherein we pinpoint the latency-

aware and mobility-aware load balancing strategies that are best for the 

resource-limited, geographically distributed infrastructures. In the grid 

computing section, peer-to-peer, and decentralized scheduling methods are 

discussed, which are best suited to loosely coupled networks. Quantum 

computing is also discussed in the paper as an early stage of load balancing 

in hybrid classical-quantum systems, the partitioning of quantum jobs, and 

the coherence limitation of qubit. In a unified taxonomy of algorithms, the 

paper describes how various algorithms can be mapped depending on their 

design philosophy, decision criteria, and applicability to different paradigms. 

Further, the paper lists evaluation charters that are widely utilized in the 

literature and underscores open issues like cross-paradigm interoperability, 
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1. Introduction 
Computing systems in the digital landscape have 

started to operate at a higher level of efficiency, 

minimal latency, and absolute reliability, together 

with processing data of an increasingly higher 

volume while at the same time servicing user 

demands that are growing rapidly. The rapid rise in 

data- centric apps, cloud-based services, and real-

time decision- making has put a huge strain on 

infrastructure providers, who are now forced to 

optimize performance while still being cost- 

effective and scalable. Load balancing in this venue 

turn out to be a primary role of distributed 

computing architectures. It allows for the smart and 

fair allocation of the computational load amongst 

various resources such as physical servers, virtual 

machines, or decentralized nodes, thus avoiding 

resource bottlenecks, guaranteeing high 

availability, and improving system responsiveness 

overall [1]. Load balancing has gone far beyond 

merely performance tuning in ensuring system 

resilience during too heavy or unpredictable 

workloads, it also reduces downtime and increases 

user satisfaction. The development of distributed 

computing paradigms has led to a great increase in 

complexity to accomplish a satisfactory load 

balancing. This is most notably illustrated in various 

modern computing ecosystems such as cloud, edge, 

fog, grid, and quantum, every one of them bringing 

along the whole new set of their own constraints, for 

instance, sensitivity, energy consumption, device 

heterogeneity, and for quantum systems, they face 

the issue of decoherence to name a few. The primary 

focus of traditional load balancing algorithms is 

centralized environments, and extensive research 

has been conducted on them; however, the new 

decentralized and hybrid architectures' applicability 

to these algorithms is still a matter of ongoing 

research. New paradigms require flexible and 

context-aware algorithms that can function 

economically under changes in network topologies 

and resource conditions. It follows that a multi-

faceted approach is necessary for the evaluation of 

load balancing strategies, one that not only takes 

scheduling decisions into account, but also 

architectural dependencies, mobility support, and 

scalability factors. This survey intends to offer a 

comprehensive bulletin covering the most important 

load balancing techniques implemented over five 

notable computing paradigms: cloud, edge, fog, 

grid, and quantum computing. It lays out a 

comprehensive categorization of algorithms, delves 

their mechanisms and talks about design ideologies 

and measurement of decisions. The article further 

carves out a consolidated classification of an 

algorithm for the purpose of comparison and it also 

points out issues that have been there all along like 

problems in interoperability across layers, the trade-

off between energy and performance as well as 

scheduling that is dependent on the context. We thus 

aspire to provide assistance to scientists and 

professionals through this research in not only 

conceiving and applying but also adjusting and 

personalizing load balancing strategies for 

distributed computing in future which is inherently 

more diverse [2] a key factor in cloud environments 

because it manages the fair distribution of customer 

requests among several servers with the goal of 

increasing system throughput performance, 

reducing latency, and guaranteeing high 

availability. Various algorithms are used in cloud-

based load balancing, and each one has its own 

advantages and disadvantages depending on the 

infrastructure and workload features. a key factor in 

cloud environments because it manages the fair 

distribution of customer requests among several 

servers with the goal of increasing system 

throughput Figure 1 shows Cloud Computing 

Reference Model 
 

scheduling with context awareness, and the trade-offs between energy and 

performance. By bringing together understanding from these different places, 

this survey acts as a base for researchers and practitioners who want to 

create load balancing strategies that are not only adaptable but also 

paradigm-specific, and cross-platform, and that fit into the changing face of 

distributed computing. 
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Figure 1 Cloud Computing Reference Model 

 

2. Relevance of Load Balancing 

In the realm of contemporary distributed computing 

environments, load balancing has become an 

indispensable instrument for preserving the 

integrity of the particular services of the web. As the 

number of users increases and applications require 

more current responsiveness, computational 

infrastructure has to be able to continue to meet 

performance standards. Load balancing solves this 

problem by intelligently allocating workloads to the 

resources available, for example, virtual machines, 

physical servers, or edge nodes, so that the resources 

are not overused, the response time is lowered, and 

the throughput is substantially more improved. For 

example, in cloud computing where multitenancy 

and on- demand resource provisioning are standard 

practices, load balancing guarantees that resources 

are distributed evenly among several servers or 

clusters and thus, it prevents the overloading of a 

particular server or cluster. Besides, this not only 

allows the scaling of the system but also assures it 

that the highest availability will be maintained and 

the service will continue uninterrupted even during 

unanticipated traffic peaks or failures in hardware. 

And also in edge and fog computing instances, 

where the resources become more dispersed and  

 

 

they are often scarce, efficient load distribution is of 

paramount importance to giving services to users 

without delay and also keeping the real-time 

processing capability intact. Additionally, 

containerization and microservices as well as hybrid 

deployment models got the more detailed way that 

load balancing has to operate so that it could make 

the right decisions. When balancing is not good, the 

performance of the backend services will be worse, 

the user experience will be bad, and the 

infrastructure will be more susceptible to a chain 

reaction of failures. Hence, effective load balancing 

is very crucial for the system to be reliable, the users 

to be satisfied, and it will also become a factor in 

minimizing the operational costs [3]. Boosted 

dependence on electronic means—covering the 

areas of electronic commerce, cloud storage, live 

health monitoring, and intelligent traffic systems—

has transformed load balancing from just a 

performance enhancer to a business-critical 

function. This in turn makes the study of load 

balancing algorithms over different computing 

paradigms not only relevant but also necessary for 

the creation of adaptive, robust distributed systems 

of the future [4]. Figure 2 shows Cloud Storage. 
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Figure 2 Cloud Storage 

 

 

3. Evolution of Load Balancing Strategies  

Load balancing approaches have significantly 

changed over time which clearly shows the changes 

in the computing world from centralized 

mainframes to dramatically distributed and hybrid 

infrastructures. Initially, load balancing was a 

manual operation that was mostly done by system 

administrators using very simple techniques like 

static configurations or DNS-based round-robin 

methods. These initial techniques were very basic 

and operated with limited context-awareness. They 

were very effective only in small-scale, mainly 

static environments [5]. A big increase in data and 

user interactions on the internet has made these 

strategies insufficient very easily and they were not 

able to maintain system responsiveness and 

reliability. When client-server architectures came 

about and dynamic web applications became 

popular in the late 1990s and early 2000s, they 

introduced more advanced software and hardware-

based load balancers. These load balancers were 

capable of dynamic resource allocation, running 

health checks, session persistence, and SSL 

termination, which in turn helped both performance 

and fault tolerance. But the fact that these strategies 

were centralized still limited them in terms of 

scalability and resilience [6]. The emergence of 

cloud computing represented a significant milestone 

in the design of load balancing strategies. 

Virtualization facilitated hardware abstraction and 

the dynamic allocation of resources. Load balancing 

at hypervisor level became the most popular 

method, as it allowed the distribution of workloads 

across virtual machines based on real-time resource 

utilization metrics such as CPU, memory, and 

network I/O [7]. Cloud-native solutions, such as 

Amazon ELB, Microsoft Azure Load Balancer, and 

Kubernetes Ingress Controllers, started to add 

policies that could auto-scale according to 

thresholds, thus increasing both the elasticity and 

cost-efficiency. Load balancing evolved to fit the 

new conditions as the computing has reached fog 

and edge nodes besides data centers. In fog 

computing, which is located more in the network's 

edge, load balancing strategies were latency-aware, 

mobility-aware, and energy-efficient, because of the 
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geographical distribution and limited resources of 

fog nodes [8]. Likewise, edge computing 

environments provided a necessity for real-time 

decision-making with the least dependence on 

central controllers. From here, decentralized and 

hierarchical load balancing algorithms came into 

being, which could operate by themselves, be 

receptive to mobility and connectivity, and trust 

their own fault tolerance even in the case of 

intermittent network conditions [9]. At the same 

time, with the growth of big data and the increase of 

AI workloads, special load balancing mechanisms 

were necessary for distributed processing 

frameworks such as Hadoop, Spark, and 

TensorFlow. These systems not only required a 

balanced task execution but also had to be aware of 

data locality, network topology, and the 

heterogeneity of computing nodes [10]. The 

quantum computing field has opened up new 

opportunities for load balancing scientists. Unlike  

classical systems, quantum computing uses qubits  

that are highly vulnerable to decoherence and have 

only a few physical resources available. Hence, load 

balancing should solve problems resulting from the 

limited circuit depth, connectivity of qubits, and the 

combining of classical and quantum parts during 

orchestration. Research in the initial stages of 

productivity is relating to task division between 

classical and quantum components, job scheduling 

for quantum hardware, and also necessitating 

implementing of error during the experiment [11]. 

Considering that quantum computers are moving 

from the NISQ devices to fault-tolerant ones, the 

matter of load balancing will greatly influence both 

the production rate and resource utilization to be 

efficient. The progression of load balancing 

techniques has reflected a shift to greater 

decentralization, environmental sensitivity, and 

targeted efficiency. The advent of novel computing 

paradigms such as serverless, federated learning, 

and quantum-cloud integrations has only served to 

broaden the reach of load balancing. Here, load 

balancing will have to go beyond being just reliable, 

it will have to incorporate more flexible, smarter, 

and compatible agents capable of performing 

seamlessly across the diverse and mixed systems. 

4. Load Balancers in Cloud Environments  
With the cloud computing paradigm, the 

provisioning of computational resources has 

changed beyond recognition through the use of 

scalable and on-demand services. Load balancing is 

a key factor in cloud environments because it 

manages the fair distribution of customer requests 

among several servers with the goal of increasing 

system throughput performance, reducing latency, 

and guaranteeing high availability. Various 

algorithms are used in cloud-based load balancing, 

and each one has its own advantages and 

disadvantages depending on the infrastructure and 

workload features. Figure 3 shows Cloud Simulator 

4.1. Round Robin Algorithm 
 

Figure 3 Cloud Simulator 

 

One of the earliest and simplest algorithms that 

Round Robin was used for load balancing because 

of its deterministic character and easy 

implementation. It distributes requests to a series of 

servers in a round-robin fashion. After the last 

server in the list receives a request, the process is 

repeated for the first server and so on. This cyclic 

nature of the process guarantees that over time, each 

server will receive an equal number of incoming 

requests. On the other hand, Round Robin considers 

that all servers are of equal capacity and the load 

generated by the requests is of equal weight, which 

rarely happens in actual cloud environments. 

Differences in server processing power, current 

load, or task complexity can lead to imbalanced 

distribution and longer queue times for certain 

servers [12]. Due to its simplicity, Round Robin 

may, however, become ineffective in heterogeneous 

environments where server capabilities and 

workloads differ significantly [13]. 

4.2. Least Connections Algorithm 

The Least Connections algorithm provides a more 

dynamic approach by taking into account the load 

on each server in real- time. It does not distribute 

requests randomly but routes each new request to a 

server that has the smallest number of active 
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connections at that moment. This is especially 

suitable to instances with continuous sessions as in 

video streaming, database transactions, or stateful 

web sessions. This flexible trait allows for a more 

balanced load and increases response times, 

particularly in cases where there are different 

durations for processing requests. The algorithm, 

though, still needs to keep track of all open 

connections, which may lead to extra work being 

done [14]. This approach is more efficient in 

systems with uneven workloads and also helps 

scalability by not overloading any single node. [15] 

Figure 4 shows Load transfer strategy 

 

 
Figure 4 Load Transfer Strategy 

 

4.3. Weighted Round Robin 
Weighted Round Robin (WRR) takes the basic 

Round Robin protocol a step further by 

incorporating weights which enable the non-

uniform distribution based on the server's abilities. 

Servers are given a weight value which is 

proportional to their computing power (CPU, RAM, 

network bandwidth). The algorithm's main idea is 

that more powerful servers are given a bigger 

portion of the incoming requests, thus resource 

usage is consistent with server capacity. Thus, for 

instance, a server with a weight of 3 will get three 

times as many requests as a server with a weight of 

1. The WRR algorithm walks the server list over and 

over while going each server as many times as its 

weight, resulting in proportional load distribution in 

heterogeneous environments [16]. Such a method is 

the most efficient for the case of cloud platforms 

with heterogeneous server instances and it also 

gives a guarantee for better performance by 

decreasing the response time and not causing the 

server to be overloaded [17]. The proportional 

distribution of requests in Weighted Round Robin 

can be mathematically expressed as: 

    Rᵢ = (Wᵢ / ΣWⱼ) × T 

Where: 

 Rᵢ = Number of requests assigned to server 

i 

 Wᵢ = Weight of server i 

 ΣWⱼ = Sum of weights of all n servers (j = 

1 to n) 

T = Total number of incoming requests in one cycle 

This equation ensures that servers with higher 

capacities receive a proportionally greater share of 

the workload, thus optimizing system performance 

in heterogeneous cloud environments [18]. 

4.4. Load Balancers in Edge Computing 

With the rapid shift of computing power from a data 

center to a data source for ultra-low latency and real-

time processing, edge computing has become a 

paradigm-shift mechanism in the most recent 

distributed systems. The edge environment, which 

is at the opposite end of the spectrum from 

centralized cloud infrastructures, carries features 

like decentralization, spatial dispersion, and 

resource limitations. The nature of these systems is 

latency-sensitive applications such as real-time 

video analytics, autonomous vehicles, industrial 

IoT, and wearable health monitors. So in this case, 

the role of load balancing is essential not only for 

safeguarding the fair distribution of resources but 

also for providing the necessary service continuity 

in the case of user mobility and heterogeneous edge 

node capabilities. The characteristics of edge 

environments that make them tiny, short-lived, and 

volatile mean that conventional methods of 

balancing load cannot meet the situations. 

Consequently, algorithms written for edge require 

load balancing, with the potential to carry out the 

real-time monitoring of the current situational 

conditions and decentralized decision-making, and 

to be able to respond rapidly to changes in the 

environment. Here, we explore the three most 

common load balancing protocols that are usually 

followed in edge ecosystems. 

4.5. Edgecloudsim Dynamic Algorithm 

EdgeCloudSim is the simulation toolkit built upon 

the CloudSim platform. This is a simulation 

environment primarily targeting the emulation of 

edge computing scenarios. Specifically, the 

integration of dynamic load balancing methods is 

one of its principal contributions that constantly 
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gather input from the environment such as server 

status, users movement, and network fluctuation 

throughout the process. In EdgeCloudSim's 

algorithmic model, the decisions are not fixed but 

rather changes are implemented dynamically while 

the mobile users are moving from one location to 

another or if the edge servers are unreachable for 

some time. The system redirects the requests to the 

best available nodes in real-time, thus not only 

eliminating service handoff delays but also 

extending the task execution without interruption 

and increasing the network's overall response speed. 

Such features are especially necessary in the cases 

of vehicular communication systems, healthcare 

monitoring, and mobile video surveillance, where a 

delay in the task allocation may cause the service to 

fail or important data to be lost [19]. 

4.6. Resource Aware Scheduling 

Resource-Aware Scheduling (RAS) is a real-time 

metric that gets its data from the edge nodes and 

takes note of the CPU usage, free memory, and 

network throughput. However, RAS, which is a 

dynamic decision-making strategy, makes use of 

resource profiling of nodes periodically to pick the 

best candidate for a certain task, whereas static ones 

make only the initial assignment without subsequent 

evaluation. The scheduler always keeps track of 

node status and makes sure that it distributes the 

tasks that come in among those nodes, which can 

process them efficiently and do not cause resource 

overutilization or service bottlenecks due to the high 

workload. Such a scheme certainly guarantees that 

low-power or already heavily-loaded devices will 

not be part of the process and thus will not 

contribute to an increase in the failure rate, even 

though they still have some unused resources. RAS 

is a very efficient method in conditions in which the 

edge devices are of different types and the workload 

is changing in an unpredictable manner. In addition, 

it enables power saving, which is very important in 

battery-operated edge systems. Experimental works 

have demonstrated RAS is able to remarkably 

improve both Quality of Service (QoS) and system 

resilience while load changes occur [20]. Figure 5 

shows Mobile Edge Computing

 

 
Figure 5 Mobile Edge Computing 

 

4.7. Mec Proximity Algorithm 

In the MEC realm, proximity is a major factor in 

load balancing thus the location and the distance to 

the user are the main factors that decide where the 

task is to be launched. The Proximity- Aware Load 

Balancing Algorithm in MEC, which is an 

algorithm loaded with the graph of the local state of 

resources of all machines in a cluster, primarily  

aims at routing tasks to the edge server that is 

physically closest to the user. This method outlines  

 

the basis for ultra-low-latency applications such as 

augmented reality, remote surgery, and autonomous 

vehicles where every millisecond counts. The 

proximity selection logic is not a purely distance-

based one but it also takes into account network 

congestion and node workload which is done in the 

same way as performance improvement that is more 

holistic. The proximity function is generally given 

by the following expression: 
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P (u, e) = α · d (u, e) + β · L(e) 
 

Where: 

 P (u, e) is the proximity cost of assigning 

user u to edge server e. 

 D (u, e) represents the network distance 

(e.g., latency or hop count) between user u 

and server e. 

 L(e) is the current load on edge server e, 

which may include processing, bandwidth, 

or memory usage. 

 α and β are weighting coefficients to 

balance the importance of distance vs. 

load. [21] 

This function ensures that the task is allocated to the 

most optimal edge node by balancing distance and 

real-time performance metrics. The proximity table 

is continuously updated to adapt to node failures or 

mobility events, maintaining system responsiveness 

and robustness. Figure 6 shows MEC Algorithm 

 

 
Figure 6 MEC Algorithm 

 

5. Load Balancers in Fog Computing 

Fog computing depicts a decentralized computing 

model that is intended to carry out and analyze data 

locally near the source of its generation, such as 

sensors, wearables, and embedded systems. In 

contrast to conventional cloud systems, fog 

environments are known by their geographic 

spread, low latency requirements, mobility, and 

resource restrictions. load balancing in such a case 

becomes a very important issue because of the 

diversity of fog nodes, limited processing and 

storage capacity, as well as the real-time nature of 

the applications they support. Since fog computing  

provides a link between the cloud and the edge, it 

has to manage the computational workloads in the 

most efficient way in order to keep the system 

responsive, minimize latency, and get rid of 

resource bottlenecks. Load balancing in fog 

computing environments needs context-aware, 

adaptive, and energy-saving strategies that are 

capable of responding to unpredictable changes in 

user requests, network dynamics, and node 

availability. Below are some of the most effective 

strategies employed in fog computing. 

5.1. Adaptive Load Balancing (ALB) 

Adaptive Load Balancing is a reactive and self-

governing approach that reflects in real-time the 

alterations of workload distribution and node 

availability. ALB algorithms, which are dynamic, 

can redistribute tasks following network parameters 

that vary, e.g., CPU utilization, memory usage, 

bandwidth availability, and service latency, as 

opposed to static ones. This method is especially 

relevant in fog systems where nodes can appear and 

disappear without warning, or where the usage 

changes significantly during the day. Modern ALB 

techniques are blending predictive models to 

envision that resource congestion which has not yet 

happened but is on its way. The predictive models 

typically use past data and learning-based 

approaches like regression, time-series forecasting, 

and decision trees. In addition, the system keeps on 

improving its distribution of the load by making 

better decisions based on the current feedback. The 

efficiency of ALB has been proven in transportation 

which is smart, surveillance that is real-time, and 

automation of industries implementation examples 

[22], [23]. In addition, ALB aligns quite well with 

the concept of fog computing on the mobile. 

Properties of vehicular fog computing, for instance, 

include devices that are constantly moving, lack of 

leaders, and fluctuating connectivity as a result of 

mobility. Adaptability in situations like these is not 

only a plus but a requirement to guarantee the 

continuity of service and lower the number of tasks 

that are not accepted [24]. 

5.2. Fuzzy Logic-Based Scheduling 

Conventional binary decision-making approaches 

come up short in fog environments owing to 

uncertainty in resource availability and workload 

predictability. Fuzzy logic-based scheduling is a 

probabilistic model that simulates human-like 

decisions, and it supports the making of more 

flexible balancing of load. In place of considering 
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input parameters as definitely high or low, fuzzy 

systems decide them on a continuum by employing 

linguistic variables like "lightly loaded," 

"moderately loaded," or "heavily loaded." 

Ultimately, the fuzzy logic system goes over those 

rules and then decides the optimal task-to-node 

assignment. For example, if we find some node 

whose CPU usage is "medium" and at the same 

time, its memory usage is "low," a scheduler might 

conclude that the node is free and thus can be given 

more tasks. Such an approach makes fog 

infrastructure scheduling much more intelligent in 

the situation when so many resources have to be 

assessed simultaneously, although the condition of 

those resources is not very certain and they are in a 

hurry. They have demonstrated remarkable success 

in cases such as tracking of circumstances in nature, 

health-related IoT, and the quick reaction of 

emergencies, because of the speed requirements and 

the lack of certainty in the operating conditions. 

Resources which are innately constrained in 

computation, coupled with fog nodes that do not 

rely on the heavy computational models, fit best 

with the ways these systems deal with imprecision 

of information perfectly.  

5.3. Energy-Aware Load Balancing 

Energy efficiency is becoming a focal point in fog 

computing, notably as fog nodes are often installed 

in settings with limited power such as remote 

locations, sensor networks, and urban IoT 

configurations. Energy-aware load balancing 

targets the efficient allocation of tasks that considers 

not just resource capacity but also the energy 

consumption characteristics of the nodes. The 

purpose of these algorithms is to achieve the lowest 

possible energy usage in the fog network and at the 

same time guarantee the best performance levels. 

They do so by assigning tasks preferentially to 

nodes that either are of low energy consumption or 

that are powered by renewable energy sources. 

Various methods adhere to the inclusion of the 

thermals and battery conditions of the nodes in the 

decision procedure so that the nodes get the correct 

level of energy usage and no energy is wasted. 

Besides this, energy-efficient balancing can result in 

savings that go beyond just energy. Besides 

extending the life of the appliances, it lowers 

running costs, and also makes a contribution to 

sustainability targets, which are indispensable for 

big IoT implementation such as smart cities, 

agricultural monitoring, and disaster management 

systems [26]. In a study reported recently, in 

addition to that, such strategies are combined with 

work capacity prediction prototypes so that tasks 

can be scheduled in advance during low-energy 

consumption times, or only a part of fog nodes can 

be activated during off-peak hours, thus still 

meeting QoS requirements and simultaneously 

saving energy. In the global shift towards 

environmentally friendly computing paradigms, 

energy-aware load balancing remains a crucial 

pathway for future fog computing developments 

[23], [26]. 

6. Load Balancers in Grid Computing 

Grid computing is one of the models for distributed 

computing which aggregates the geographically 

distributed and heterogeneous resources—ranging 

from the processing units and the storage to the 

software services, to work as a single system for 

solving complicated scientific, academic, and 

industrial problems. These resources are really quite 

different and they may come from various 

administrative domains and could vary very much 

in availability, capability, and reliability. 

Consequently, effective load balancing in grid 

computing is indispensable to ensure optimal 

utilization, reduce job turnaround time, and 

maintain service reliability. A decentralized and 

intelligent scheduling approach, different from the 

centralized cloud perspectives that governs grid 

environments, is needed in grid systems. Such a 

mechanism would enable these systems to keep 

track and dynamically adjust during the changing 

conditions of load, node availability, and the intake 

of application requirements. Two of the most 

popular load balancing techniques that have been 

proven as effective in grid computing are those 

which employ Genetic Algorithm, Ant Colony 

Optimization, and Min-min Scheduling as the base. 

In addition to dealing with the diversity and spread 

of the grid resources, the algorithms also provide 

scalability, fault tolerance, as well as more efficient 

performance for all nodes. 

6.1. Genetic Algorithm- Based Load 

Balancing 

Genetic Algorithm (GA) is a class of stochastic 

search procedure which are inspired by natural 

selection and meiosis. GAs are well suited for 

tackling NP-complete problems efficiently if these 

problems can be translated to the form of scheduling 
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and resource allocation in grid infrastructure 

characteristics. The major principle of GA-based 

load balancing is to iteratively generate new 

populations of candidate solutions (chromosomes) 

in the hope of finding the minimum or maximum of 

an objective, usually corresponding to time, load 

variance, or cost if the algorithm is implemented as 

a minimization or maximization problem 

respectively. Here, each chromosome represents a 

possible configuration of the tasks assigned to the 

computational nodes. The algorithm then continues 

with the following genetic operations: 

 Selection: Taking the fittest individuals 

(task-resource mappings) based on a certain 

fitness function, which can be made up of 

parameters like makespan (total time to 

execute all tasks), load balance index, or 

network delay. 

 Crossover: Merging pairs of chromosomes 

in order to create new offspring that have the 

traits of both parents. 

 Mutation: Giving offspring some random 

changes to keep genetic diversity and not get 

stuck at a local optimum. 

 A popular fitness function is given by the 

equation: 

 Fitness = 1 / Makespan 

Here: 

a) Makespan is the longest time of completion 

among all the resources. 

b) We want to get the smallest makespan, 

which is equivalent to the highest fitness. 

Genetic Algorithm (GA)-based scheduling has been 

proven to produce better outcomes than 

conventional heuristics. It is especially useful in 

large-scale grid systems where the search space for 

optimal solutions is enormous. This technique is 

especially suitable in coping with non-deterministic 

behavior, multi-objective constraints, and dynamic 

workloads [27], [28]. 

6.2. Ant Colony Optimization (ACO) 

ACO is a population-based metaheuristic that aims 

to mimic social insects' behavior in finding shortest 

paths to food sources. The ants perform such tasks 

as searching and foraging out of exploration and 

exploitation of previously found routes. This 

behavior complicates the understanding of the task 

of grid load balancing, where tasks that arrive 

dynamically could be assigned simulatenously to 

the different nodes as we traverse along the various 

paths in the solution space, with each path to a 

certain redirecting of the tasks to the nodes. 

The concept is that every ant takes a tiny part of the 

total effort sampling a task, choosing the current 

best decision, constructing a solution, and 

committing it incrementally. 

 Pheromone Trails: Chemical signals left 

by ants showing them the direction to follow 

to find the optimal food source. 

 Heuristic Information: Such as the size of 

the task, the CPU speed, the length of the 

queue, and the bandwidth. 

Solutions that are good become more attractive to 

other ants over time, resulting in a kind of runway 

effect where new ants keep following the recent and 

best solution. ACO allows the nodes in the system 

to act independently and coordinate with each other 

as they work on the problem, which is beneficial in 

a grid computing environment where nodes might 

be difficult to reach, fail, or change their state 

without any warning. ACO has found effective use 

in scientific workflows, climate modeling, and 

genome analysis, where it has provided more equal 

load distribution, higher fault tolerance, and lower 

overall execution time than deterministic algorithms 

[29], [30]. Figure 7 shows Ant Colony Optimization 

 

 
Figure 7 Ant Colony Optimization 

 

6.3. Min-Min Scheduling Algorithm 

The Min-Min algorithm is a deterministic 

scheduling heuristic that is characterized by its 

simplicity and speed. It operates by finding a task-

resource pair such that the task with the minimum 

earliest completion time is scheduled first. The 

process can be formulated as follows: 

 For every task that is not yet scheduled, find 

the earliest completion time (ECT) on every 

resource. 
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 Choose the task with the minimum of 

overall ECT. 

 Give the task to the resource which 

corresponds to that and indicate the task as 

done. 

 Do it again till all the tasks have been given. 

The algorithm takes advantage of the greedy 

strategy of picking up small jobs first and thus it 

ensures that those resources which work faster are 

not blocked unnecessarily by big jobs. This is often 

beneficial since it yields higher throughput and 

better system utilization in environments where the 

major part of workload is composed of small to 

medium jobs. The Min-Min method caused the 

problem of starvation of the big tasks in some 

situations, but it is preferred by many people since 

it is easy to implement. It has minimal overhead and 

is suitable for time-sensitive grid applications such 

as multimedia rendering, medical diagnostics, and 

distributed data analysis [31], [32] because of its 

straightforwardness and low overhead. 

7. Load Balancers in Quantum Computing 

Quantum computing prominently showcases a new 

facet of computational science, where information 

is processed by qubits, quantum bits that utilize the 

principles of superposition, entanglement, and 

quantum tunneling. The latter features, make 

quantum computers exponentially more powerful 

compared to classical machines in particular areas 

like cryptography, optimization, and running 

simulations of complex systems. However, on the 

other side of the coin, resource management and 

task scheduling in quantum computing are 

demanding jobs, thus load balancing, a key factor, 

has to cope with not only quantum-specific 

limitations but also the synergy with classical 

systems. To load balancing in normal computing, 

algorithms are employed that can be either 

deterministic or probabilistic is traditional 

computing, whereas in quantum computing, native 

quantum scheduling models, which can utilize the 

non-classical behaviors of machines, are available 

to find solutions for resource allocation and work 

distribution problems in a more efficient manner. 

Quantum computing is on the rise cloud- based 

quantum processors (e.g., IBM Q, D-Wave, and 

Google Sycamore) will explode, practical and smart 

load balancing will be crucial in keeping the 

integrity of the performance, lowering 

communication latency, and optimizing quantum 

resource utilization. 

7.1. Quantum Entanglement- Based 

Scheduling 

Quantum entanglement is a really abnormal 

phenomenon when the states of not one or two but 

multiple qubits become so interdependent that if 

you change one it will affect the others immediately 

even if they are in different places. When it comes 

to distributed quantum computing, this feature is the 

one that is used to keep the task assignments and the 

synchronizing of the resources in the same state, as 

if the communication overhead were not there. In 

Quantum Entanglement-Based Scheduling, the task 

qubits get entangled with resource qubits. When a 

qubit is used for a task, the entangled partner qubit 

auto-magically reflects the same assignment, thus, 

the scheduling decision is communicated in an 

instant all over the quantum system without any 

delay. This method can be especially advantageous 

in quantum cloud systems where entangled qubits 

are being distributed among quantum nodes located 

at different places. Such entanglement-driven 

synchronization eliminates classical bottlenecks 

like: 

 Delays due to message passing. 

 Task queuing inconsistencies. 

 Resource idling due to communication 

latency.  

Though still mostly theoretical and hindered by the 

limitations of practical implementation (i.e., 

decoherence, error correction), this kind of load 

balancing may become crucial with quantum 

interconnects' advancement [33], [34]. 

7.2. Grover-Based Search Load Balancer 

Grover’s algorithm is a quantum search algorithm 

that is most famous for its ability to find an element 

in an unsorted database of N elements in about 

O(N), O(√N), O(N) time, thus providing a quadratic 

speedup over classical linear search methods. If we 

consider the load balancing scenario, the problem of 

assigning the best resource to a certain job can be 

seen as a search problem, where the scheduler needs 

to find an optimal match from a set of possible task-

resource pairings. Grover’s algorithm is intended to: 

 Choose a node that satisfies given latency or 

capability requirements. 

 Make scheduling decisions that are based on 

the cost function evaluated through 

quantum. 
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 Find the resource that has the least load. 

This method comprises quantum state initialization, 

oracle evaluation (which marks the desirable 

resource), and amplitude amplification to enhance 

the probability of picking the best node. Only a few 

steps are involved when a quantum-based scheduler 

interdisciplinarity mergers with classical processing 

units since that enables the fast reduction of the best 

candidates for task execution [35], [36]. The load 

balancing system that is based on Grover is also 

scalable over cloud platforms. In fact, those who can 

provide quantum as a service (QaaS) will be able to 

avail themselves of this new technology to optimize 

the load at distributed quantum cores in real-time. 

Figure 8 shows Quantum Annealing 

 

 
Figure 8 Quantum Annealing 

 

7.3. Quantum Annealing for Load 

Optimization 

Quantum annealing is a 

metaheuristic approach for optimization 

problems that use quantum fluctuations rather than 

classical thermal noise. The main idea is that the 

problem (here, load balancing) is converted into a 

quadratic unconstrained binary optimization 

(QUBO) or an Ising model, where every 

configuration of task-resource assignment is an 

energy level. The goal is to get a configuration (i.e., 

task distribution) that reduces the total energy of the 

system the most or, in other words, ensures load 

balance. Quantum annealers like the D-Wave 

systems can make use of quantum tunneling to 

venture through the solution space, thus, they can 

smoothly go beyond local minima and reach the 

global optimal solution faster. The approach is a 

good fit for: 

 Highly dimensional constrains that define 

complex load balancing problems. 

 Sharing of resources between the quantum 

and classical parts of a hybrid network. 

 Situations, wherein it is necessary to 

optimize in real- time under changing 

workloads. 

Examples of objective functions that might be 

employed by quantum annealing for load balancing 

can be: 

a) Execution time variances at different 

nodes. 

b) Power consumption. 

c) Maximum permissible delays. 

d) Ensuring no workload gets left behind 

when sharing resources. 

Quantum annealing is gaining traction in the data 

center scheduling, IoT traffic control, and quantum-

aware HPC clusters [37], [38]. Studies go on in the 

sense of enlarging the working space of annealers 

so as to be able to allocate the load in real time as 

the quantum hardware becomes mature. Figure 8 

shows Quantum Annealing 

 

 
Figure 8 Quantum Annealing 

 

Conclusion 

Load balancing has been completely reinvented 

after several years that it has gone from simple static 

models to much more context-aware, intelligent and 

quantum-enhanced models. This survey has delved 

into load balancing methods in five different, 

though interconnected, computing paradigms - 

cloud, edge, fog, grid, and quantum computing. 

Each computing paradigm has its own specific 

architectonic limitations, operational targets, and 

performance issues that require custom-tailored 

balancing techniques suitable for their distinctive 

characters. The three Round Robin-based load 

balancing methods of Round Robin, Least 
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Connections, and Weighted Round Robin are the 

simplest mechanisms that form the foundation of 

the balancing of resources in cloud computing 

where the key characteristics are scalability, 

elasticity, and resource abstraction. However, with 

the increasing heterogeneity of cloud workloads and 

the need for low latency, the traditional approaches 

tend to take a back seat, and there is a requirement 

to integrate various monitoring and profiling 

techniques for real-time responsiveness and system 

throughput to be maintained. In the case of edge 

computing, the goal is to reduce the processing 

delay of data that is passing through the peripherals 

of the network, and therefore, it sets the parameters 

of the load balancing task as highly local and 

context-driven. The dynamic algorithms that are 

implemented in simulators like EdgeCloudSim, 

schedulers that are resource-aware, and methods 

based on proximity, such as those in MEC networks, 

are examples of the way that load balancing at the 

edge should be able to take into consideration the 

user that is moving around, the limited computing 

power, and the changing network conditions. Fog is 

seen as both a layer of resources from the cloud and 

the edge. The fog layer is the nature of the low-

latency and energy- conscious load balancers. ALB 

technique, the scheduling method based on fuzzy 

logic, and energy-efficient algorithms are the 

greatest contributors to the application of energy-

saving methods along with latency in the context of 

distributed and resource-limited fog nodes. These 

methods are especially significant for IoT to support 

its scalability and sustainability since it has been 

thought that real-time decision- making and power- 

consumption are the most essential factors in this 

ecosystem. Metaheuristic-based methods like 

Genetic Algorithms (GA), Ant Colony 

Optimization (ACO), and heuristic basics such as 

Min-Min scheduling have been reported in various 

research studies to be effective solutions to handle 

load balancing in the grid computing paradigm. It is 

essential to understand that these algorithms are 

capable of distributing the workload in a 

combinatorial manner and simultaneously taking 

various factors into account, including the execution 

time, availability of resources, and the 

communication overhead. Such new quantum 

computer architectures radically redefine the 

dimensions of computation and with that, the 

principles of work redistribution also change. 

Transfer of information through quantum entangled 

states allows for an almost instantaneous setting of 

task assignments, as one of the fastest quantum 

algorithms, Grover's algorithm, offers a rapid search 

of an optimal schedule. By utilizing phenomena like 

quantum tunneling, quantum annealing can open a 

fresh route to high- dimensional load optimization 

problems. The future may open to quantum 

capabilities where load balancing is no longer 

constrained by traditional computation boundaries, 

but rather given a new dimension by the quantum. 

The main point of the research is that it is not 

possible to find a universal solution for load 

balancing. The working conditions of different 

paradigms vary significantly and all of the 

contextual characteristics must be taken into 

account if work distribution efficiency is to be 

achieved. The nearest roadmap for the future of 

work distribution leads to hybrid, context- aware 

architectures that include the best of various 

approaches (rules, machine learning, and quantum-

inspired optimization) in unified and autonomous 

units. The systems will require making inductive 

decisions relying on entirely static characteristics, 

as well as dynamic and predictive analytics, with 

behavioral patterns, energy limitations, mobility, 

and data locality being some of the variables 

analyzed. In addition to that, AI and RL are set to 

become game changers in the creation of 

independently operating load balancers that can 

carry out perpetual self-improvement. The 

combining of AI and quantum computing has a 

potential to bring about quantum- accelerated 

learning models that can decide the scheduling in 

real-time. Collaborative load balancing across 

nodes could become a reality, with the help of 

federated and decentralized learning models, while 

the privacy of data is still maintained. In conclusion, 

the domain of load balancing is changing from a 

focus on systems to a multidisciplinary area dealing 

with distributed systems, AI, quantum physics, and 

energy-efficient computing. As computer 

paradigms keep changing, the creation of smart, 

reliable, and scalable load balancing systems will 

play a crucial role in allowing resilient, adaptable, 

and green future computing infrastructures. 
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