
RESEARCH ARTICLE

RSP Science Hub

International Research Journal on Advanced Science Hub
2582-4376

www.rspsciencehub.com
 Vol. 07, Issue 09 September

http://dx.doi.org/10.47392/IRJASH.2025.090

 OPEN ACCESS 817

An IoT Based Smart Home System for Fault Detection
Inchara R1, Dr. Sunita Adarsh Yadwad2
1PG Scholar, Dept. of CSE, GSSS Institute of Engg. & Tech. for Women, Mysuru, Karnataka, India
2Professor, Dept. of CSE, GSSS Institute of Engg. & Tech. for Women, Mysuru, Karnataka, India

Emails: incharar20@gmail.com1, dr.sunita@gsss.edu.in2

1. Introduction

Smart Home System is a cyber-physical

infrastructure comprising embedded systems, the

Internet of Things communication protocol, and

cloud computing tech that enables automation,

monitoring, and controlling the environment and

management in residential buildings. The system

includes networks of connected smart devices and

appliances with microcontroller, wireless interface,

sensors, actuators and control algorithms. Washing

machines, ovens, HVAC units, and refrigerators can

be considered smart appliances that are embarked

on the real-time systems with tightened timing,

safety, and energy limitations. They all have a

microcontroller or system on a chip (SoC) like

STM32 or ESP32 along with a real time operating

system like Free RTOS, etc. The Wi-Fi, Zigbee, and

BLE modules offer the communication capabilities

and the Internet-of-Things (IoT) standards such as

MQTT, CoAP, and LwM2M provide efficient

telemetry, IoT device control, and over-the-air

(OTA) firmware upgrade. The latest generation

smart home systems combine large sets of

interconnected IoT devices, sensors, actuators, and

control hubs to provide automation, energy

efficiency, and interactive experience to the user.

Nonetheless, this complexity ushers in various

possible faults that may undermine system

reliability and safety. These prevalent types of

hardware faults are sensor drift, stuck-at errors,

stuck actuators, and power supply inconsistency.

The problems with communication can be

introduced by the loss of packets, the lack of

Article history Abstract

Received: 20 August 2025

Accepted: 03 September 2025

Published:25 September 2025

Keywords:

Smart Home System, IoT,

Home Automation,

Embedded System,

Wireless Communications

This paper includes an IoT-based smart house system to detect faults in real

time with the help of embedded platforms including. It incorporates the

environmental, electrical, and operation sensors to detect abnormalities and

failures of the home facilities and equipment. NODE to NODE

communication is facilitated with BLE, Zigbee, Z-Wave and Wi-Fi that is

optimized to support different power and bandwidth demands. Firmware is

run on microcontrollers, which have a capability to interface low-level

sensors and do edge processing in C/C++, or Python. Advanced diagnostics

are done on complex components based on embedded Linux and either

Python or JavaScript. The cloud services such as AWS IoT offer access at a

distance, data recordings, and fault classification based on machine learning.

Scalable and modular system architecture ensures powerful and effective

fault detection in a smart home setting. Isolation Forest and LSTM neural

networks for sensor problem diagnosis and predictive maintenance. Network

adaptability is increased by local fallback strategies, watchdog timers, and

secure firmware updates. This research supports the development of smart

home systems which are scalable, safe, and intelligent.

mailto:incharar20@gmail.com1

An IoT Based Smart Home System for Fault Detection 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 818

latency, or the other wireless protocol mismatches

on the Zigbee, BLE, Z-Wave, or Wi-Fi network [12]

Shown in Figure 1.

Figure 1 Block diagram of Smart Home System

Faults in data like incorrect sensor values, data

corruption or data loss and problems in time

synchronization also prevent proper decision

making. The remote control, monitoring tasks may

also fail due to cloud integration errors, like API-

related errors, losing a command of voice

assistance, or even an expired authentication token.

The occurrence of these temporary or permanent

faults demonstrates the high urgency of supports to

demonstrate the greatest level of fault tolerance,

responsiveness, and resiliency of a system by

introducing real-time intelligent fault detection

mechanism in smart home settings [8]. The recent

progress in machine learning (ML) and deep

learning (DL) allowed the implementation of

intelligent systems of fault detection operating in

real time and based on edge, fog, or cloud

infrastructures [9]. Such methods are based on the

anomaly detection represented by throughput-delay

model, ensemble classifiers and convolutional

neural networks (CNNs), and sparse or hybrid

autoencoders [10]. The availability of such smart

models with low-end devices, such as Raspberry Pi

and ESP32 also improves the accessibility and

scalability of smart fault detection frameworks. The

goal of the paper is to contribute to this field by

consolidating various strategies adopted in the

available literature and suggesting a centralized

model that would effectively identify operational

errors in heterogeneous smart homes.

2. Literature Survey

The spread of the Internet of Things devices makes

it possible to increase comfort, automation, and

energy efficiency with the help of smart home

systems. Nonetheless, the fact that heterogeneous

sensors, actuators and communication protocols are

intricately interconnected undermines the

likelihood that faults of various kinds may occur to

corrupt system performance and safety of the user.

The popular causes of the faults in smart home

settings are related to the failure of hardware,

communication jam, software bug or interference in

the settings. According to Cheng et al. Wi-Fi smart

home devices are prone to crashes and

disconnections since the environment in which they

are deployed is dynamic and the wireless

connection is unstable [1]. To overcome these

shortcomings, machine learning (ML) and deep

learning (DL) techniques have been increasingly

popular due to the capability to define normal

behavioural patterns and detect abnormal in real

time. Sarwar et al. suggests a two-level architecture

that deploys various classifiers such as Random

Forest, AdaBoost, and LSTM with high recall and

F1-scores on datasets such as UNSW BoT-IoT [2].

There are also considerations to low-cost, edge-

based detection frameworks that enhance

scalability. Tajdari et al. designed a raspberry Pi

based fault detection system that monitored

electrical panels in real time and controlled the

Inchara R et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 819

deployment of versions to implement fault

responses when latency is unacceptable and when

the response is localized and cloud independent [3].

The traditional fault detection strategies are loosely

classified into signal-processing-based,

mathematical as well as intelligent data-based

systems. Signal-based methods working on the

pattern analysis (vibration, noise, voltage, etc) and

model-based methods with the help of

statistic/physical models compare the real-time

behaviour. Cheng et al. identify the issue of

selecting the parameter and the inability of such

traditional approaches to capture complexity of

smart environments. Other studies are also

dedicated to the optimization of data transfer and

network-level activity to conclude on device health.

Cheng et al. present a fault detection technique in a

form of Throughput and Delay Distribution (TDD),

which records the Wi-Fi packet flows to detect the

status of smart devices. The method measures real

time throughput and delay against statistical profiles

that are expected, within Gaussian modelling of

anomaly classes. In this method, the accuracy of

detection is high and few monitoring parameters are

required [1]. Because deep learning can model high-

volume results of complex sensors, it has become a

dominant factor in fault detection of smart home

systems. Cicero et al. designed lightweight Sparse

U-Net architecture-based unsupervised anomaly

detection system that can be used to detect

malfunctions in sensors and excessively

unfavourable conditions in the environment in real-

time. Their edge-deployable architecture does not

involve the use of cloud infrastructure and labelled

data, which is efficient to use in practical smart

building applications [4]. Tajdari and Rahmat

suggested an affordable IoT-based sensor network

to detect the faults in electric boards with the

assistance of single-board computers such as

Raspberry Pi. Sensor parameters monitored in the

system include voltage and temperature in real-time

and complete fault identification is performed

through a local processing unit, thus minimizing the

need to communicate continuously with the cloud.

Its execution is based on use of very basic electronic

circuits and cloud connectivity through Duplicity as

a remote access [5]. Rahim et al. developed an

abnormality detection and face recognition system

of IoT devices on smart homes based on logit-

boosted convolutional neural networks (CNNs).

The framework employs a sort of logistic

regression, gradient-boosting classifier, and CNN to

recognize anomalies at device level, with or without

the support of cybersecurity experts. The system

was highly accurate after being trained on labelled

sensor data (during anomaly detection, it reached a

94 percent accuracy), presenting an excellent

possibility of real-time fault classification. The

presented work showcases the importance of

machine learning and biometric intelligence

combination to develop smarter and safer homes

[6]. Cheng et al. [13] described the cost-effective

technique of fault detection of Wi-Fi-based IoT

devices of smart home using channel state

information (CSI) accompanied with a Time

Division Duplex (TDD) strategy. The technique

identifies the malfunctions of the devices in real

time through the analysis of the Wi-Fi signal

variations, which eradicates the requirement of

other sensors. Experiments showed high-accuracy

rates, robustness to environmental changes,

scalability, and made it a viable solution to

proactive fault management in home environments

where a smart home exists. Tajdari and Rahmat [14]

designed a low cost IoT based ecosystem of fault

detection system in electrical panels based on the

use of single-board computers. The system

combines the IoT sensors and computational units

to capture data and diagnose faults in smart

monitoring, which is to notify timely fault detection.

The given method will lower downtime and

enhance safety and maintenance, Additionally,

since it uses single-board computers, the

applications will be affordable and simple to roll out

in smart homes and buildings. Cicero et al. [15] had

developed a deep learning system on anomaly

detection of IoT enabled smart buildings that fixes

anomalies on faults, fires, and unauthorized access.

The system runs a lightweight U-Net architecture

based on Sparse network to perform abnormal

detection in unsupervised anomaly detection on

sensor networks data without using any labelled

training data. Designed to run on edge computing

device, it can allow detection and reaction in real-

time. It was experimentally proved that it is

effective in reinforcing safety, energy efficiency,

and occupant comfort as an example of the potential

of applying artificial intelligence with edge

computing to create scalable control of its smart

buildings. The paper [16] proposes six

An IoT Based Smart Home System for Fault Detection 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 820

combinations of logistic regression and gradient-

boosted CNN to have face recognition with

anomaly detection integrity within a smart home

IoT environment. The LR-HGBC-CNN model has

the best measure of performance with 94 percent in

anomaly detection and 88 percent in facial

authentication. This combination of monitoring of

devices behaviour and biometric verification

promotes the effective functioning of the system

and its enhanced security in intelligent habitation.

3. Methodology

The smart home systems are put up with various

programming environments depending on the

complexity of components. Basic equipment such

as motion detectors, smart plugs, or temperature

sensors is usually coded in C or C++ in either

lightweight RTOS (e.g., Free RTOS) or bare metals

using IDEs such as MPLAB X, Keil vision or

STM32CubeIDE. They are based on

microcontrollers like STM32, ESP8266 or PIC with

raw hardware access through timers, interrupts and

GPIO, there is just no operating system involved.

More advance devices that require networking or

multitasking (e.g. smart lights, locks, thermostats)

are developed using RTOS environments. It is

programmed in C/C++, usually by VS Code +

Platform IO or from the vendor tools, and the

firmware is downloaded through a USB port, JTAG

programming, or SWD. Programming for more

complex smart home devices, including video

doorbells, smart displays, smart cameras, or home

hubs, is typically done in an embedded Linux

environment. Linux-based operating systems

(Yocto Project or Build root) are installed on these

computers, which have CPUs like the ARM Cortex-

A. Higher-level application logic may be

implemented in Python, JavaScript (Node.js), or

even Java, while drivers and system software are

written in C or C++. As well, deep learning (e.g.

convolutional neural networks (CNNs) and sparse

U-Net structures) are incorporated to achieve high-

dimensional time-series and image-based defects, to

aid in more accurate detection of weak or changing

faults. These models may be deployed on-edge

systems to provide quick response latency or to the

cloud where it may further analyse and learn in the

long run. When a fault is identified, the system

sends alerts to the nearest location through actuators

or in a distant location through a mobile phone.

Automated responses like resets of the devices or

switch fallback are carried out depending on the

case to provide stability to the system. Performance

of the detection framework is measured in terms of

accuracy, recall, precision, F1-score and response

time. Such a multi-level approach will guarantee a

robust, flexible, and scalable fault detection,

depending on the complexity of smart home

environment [4]. Based on the processing power,

memory, and functional needs of the component

being created, the programming environment varies

from bare-metal C for basic sensor nodes to full

Linux and cloud-integrated stacks for high-end

devices.

4. Discussion and Future Works

The proposed smart home system uses a variety of

sensors, Linux-based controllers like Raspberry Pi,

and other appropriate embedded platforms to

combine gas leak detection with fire hazard

monitoring. It consistently identifies fire dangers

and flammable gasses (for example, using

temperature or flame sensors), setting off safety

measures like alerts and notifications. Platforms

based on Linux provide sophisticated features like

multitasking, data logging, remote monitoring, and

simple interaction with cloud services or mobile

apps. GPIO control, open-source tools, and

compatibility for protocols like MQTT, HTTP, and

Bluetooth are all advantages of devices like the

Raspberry Pi. Depending on performance, budget,

or available space, other embedded Linux boards

can also be modified [7]. Under typical

circumstances, sensor performance was largely

constant; nevertheless, environmental elements like

humidity, ventilation, or electrical noise may have

an impact on sensitivity, indicating the need for

filtering or calibration. Linux systems are flexible,

but they are not by default real-time, which could

cause slight lags in applications that need to run

quickly. In these situations, responsiveness might be

enhanced via microcontroller-based hybrids or

lightweight real-time systems. But network

availability and steady power are still necessary for

system dependability, highlighting the necessity of

backup controllers or watchdog timers. At this

instance, the system cannot afford idle time caused

by the failure of its network or operating system

breakdowns or worse yet power failure. Subsequent

designs can have re-redundant microcontrollers;

even re-redundant power reserves the critical

operations can still be run in the event of those

outages. The problem is false positive; environment

change which causes the sensors to provide the

Inchara R et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 821

erroneous signal too. Such additional features of the

system as data analytics, recording errors, and

abnormality detecting algorithms would be

beneficial to implement.

Table 1 Comparison among different fault detection algorithm

Criteria
Isolation
Forest

One-Class
SVM

Random
Forest

Decision
Tree

ANN

Type Unsupervised Unsupervised Supervised Supervised Supervised
Labelled Data No No Yes Yes Yes

Unknown
Faults

Yes Yes No No Limited

Imbalance
Handling

High High
Needs
tuning

Poor
Complex

setup
Computational

Efficiency
Light Moderate Heavy Fast Heavy

Anomaly
Score

Built-in Yes No No Complex

Ease of Edge
Deployment

Yes Moderate No Yes No

Unlabelled
Use

Excellent Excellent No No No

Identify the issues at the early stage and diagnose

non typical operations of sensors more accurately.

The algorithms are still good ones; however, they

are rather run on relatively small hardware and, in

turn, are effective only in case only little data is

present. In case it is provided with considerable

amounts of processing power, deep learning

methods should be used as primary. Amongst them,

LSTM networks and Autoencoders stand out due to

their expertise in time-series data and may therefore

be able to pick up complex faults that would be

overlooked by any other approaches. Well, real time

applications are an entirely different though.

Accuracy is not all here but you also require a

method to produce results as rapidly as possible.

Those traditional threshold methods remain the

favourites in that arena, because they are relatively

simple and fast. The data sets are generated with

functions to create different patterns and

associations. The main difference between different

faults detection algorithms that are prevalent in

smart home applications is demonstrated in the

Table 1.

4.1. Threshold + Moving Average

The moving average, within sensor data, focuses on

the long-term direction with less focus on short-

term fluctuation. By filtering the information and

using a predetermined threshold, abnormal

behaviour (e.g. such an abrupt gas leak or

temperature increase) can be detected well in time.

The approach is simple to implement, lightweight in

computation and suitable to real-time embedded

systems which have resource limitations. The size

of windows affects the number of recent values

averaged to damp short-term oscillations: a large

window acts as a strong filter but will respond too

slowly to a change; a small window is faster to a

change but will have more noise or noise-like

behaviour. The threshold is the amount by which the

raw data and smoothed data must differ to flag an

anomaly; it determines the level of sensitivity of the

error detection by smaller numbers of

differentiation meaning that every little change

being detected, the higher the numbers, the higher

the sensitivity to significant deviations. Combined

they are both responsive and tolerant to noise in

detecting abnormal sensor behaviour Shown in

Figure 2.

Figure 2 Block Python Code Snippet of Moving

Algorithm Function

An IoT Based Smart Home System for Fault Detection 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 822

Figure 3 shows us threshold + moving average

processing the raw data and giving the filtered data

with two fault values being detected and removed in

the filtered data.

Figure 3 Threshold + Moving Algorithm graph

4.2. Isolation Forest or One-Class SVM

To find observations isolated and anomalies more

obvious, Isolation Forest divides the data and

randomly selects features. On the contrast, One-

Class SVM trains a margin around average data and

labels all data outside this average margin as

untypical. The methods are useful in the context of

smart home applications in which faults are rare yet

critical as the methods are effective in diagnosing

aberrant behaviours in the sensors or the system

without the need to supply labelled fault data. The

isolation forest and One-class SVM are the machine

learning techniques applicable to identify

abnormalities in smart homes.

Figure 4 Block Isolation Forest function with

parameters

Figure 5 One-Class SVM function with

parameter

They do not require labelled data to operate, and this

makes them applicable in cases where actual faults

are scarce. Isolation forest operates by randomly

dividing the data into creating different-looking

points than other data and, as a result, these types of

points are labelled as anomalies. The most

significant parameter of Isolation Forest is known as

contamination (Figure 4. Block Isolation Forest

function with parameters), and this parameter

informs the model about the target percentage of

data that should be unusual. The larger the value of

contamination the more data will be considered as

suspicious by the model. On the contrary, One-

Class SVM attempts to learn the normal appearance

of data by surrounding it with a boundary. Anything

beyond this is considered as an anomaly.

Figure 6 Isolation Forest and One-Class SVM

graph

Two parameters of One-Class SVM are gamma and

nu (Figure 5. One-Class SVM function with

parameter). The value of nu regulates the amount of

data that may be permitted beyond the line (the

number of anomalies to be expected) and the value

of gamma the closeness or looseness of the line-the

smaller gamma, the smoother, the larger gamma, the

more sensitive. In smart homes, such models can be

applied to detect an anomaly such as gas leak,

malfunctioned appliance, or odd movement patterns

even when no previous instances of faults exist. In

the Figure 6. Isolation Forest and One-Class SVM

graph, the red dot is normal data, and the blue one

is those points described as different or unexpected

by the models. The two models identify the outliers

although in varied methods. Such approach can be

applied to practical systems such as smart homes to

detect anomalous activity or even faults.

4.3. LSTM or Autoencoder Neural Networks

LSTM (Long Short-Term Memory) networks and

autoencoders as deep learning architectures are

Inchara R et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 823

good at both reconstruction of inputs and learning

temporal structure in the inputs. In the detection of

defects, LSTMs look forward to the sensor

magnitudes whereas they rely on previous

chronologies and change points to anomalous. A

class of autoencoders computes the reconstruction

error having reconstructed sensor data, and higher

values can reflect issues. Such techniques are ideal

as part of advanced smart home monitoring as they

can sense complex, time-sensitive relationship and

detect normal activity Shown in Figure 7.

Figure 7 Echoes running its full cycle

The Long Short-Term Memory (LSTM) is a form of

recurrent neural network (RNN) that performs

especially well with operations on sequence data,

including times series data. In anomaly detection

context, LSTMs are trained to learn the regular data

of a signal by regressing input data sequences. The

parameters and their choices play significant roles

in the learning performance of the LSTM model:

epochs and number of iterations through the entire

training dataset that the model needs to pass through

in order to gradually minimize the reconstruction

error, batch size that determines how many training

samples should be processed before any of the

internal parameters are updated, how much memory

should be consumed and how quickly convergence

can be achieved, timesteps that define how many

past data points are taken into consideration by the

model at the same time and latent dim (or the

number of units in the LSTM layer) that determine

the capacity of the model to capture (Figure 8).

These parameters cooperate with each other to

allow the LSTM model to memorize normal

patterns of the signal in such a way that the crucial

deviations could also be detected as anomalies.

Figure 9 plot indicates how an LSTM Autoencoder

was used to detect anomalies in time-series data.

The orange signal is noisy input signal, the green

dashed signal is the original clean signal, and the

blue signal is the reconstructed signal of the

predicted by the model. In case the reconstruction

does not correspond with the input, it is a sign that

an anomaly might be detected and, thus, can help

reveal the uncharacteristic patterns or flaws in the

systems, such as smart homes.

Figure 8 LSTM Function

Figure 9 LSTM/Autoencoder Graph

To increase the resilience of smart home systems to

network problems, networked equipment is to be

supported both to recover locally on failure of

essential functions and to reconnect after network

disconnection, with retries and exponential backoff

very common auto-reconnect mechanisms, and

network outage events should be logged and users

warned via LEDs or via apps that action is required.

Unresponsive modules have a watchdog timer that

can be restarted, and backup power protects the

system, and secure firmware updates are capable of

future enhancements to recovery. Figure 10 shows

smart home dashboard, a flaw in the Living Room

Thermostat has been highlighted where presence of

problems such as voltage spikes and sensor errors

has been encountered. These issues will

automatically be flagged by the system and be

categorized as to the urgency thereof and serve as

An IoT Based Smart Home System for Fault Detection 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 824

an automatic reminder to the user, thus maintaining

safety and being able to operate the home devices in

a smooth manner. In embedded and smart home

systems, a fault lookup table is a preset data

structure that maps fault circumstances to associated

fault codes, severity levels, and remedial actions. It

serves as a quick reference guide that aids the

system in identifying and effectively addressing

identified issues. Smart home systems Fault looks

up tables are system specific. Less complex

embedded solutions are hardcoded tables (e.g. C

structs or arrays), whereas more open ones use

configuration files (YAML, JSON or .in).

Figure 10 Webpage Dashboard Showing Faults

 Intelligent behaviour under novel circumstances

and predictable error handling are made possible by

combining static rules with adaptive ML flags.

Lastly, by recording CPU usage, sensor status, and

connectivity, a system health monitoring module

can improve long-term dependability and safety by

spotting early failure indicators and sending out

preventive maintenance notifications. All these

code and algorithms are scripted to meet memory

requirements of the system which is a challenging

task involving code optimization at different levels.

Conclusion

Among the notable conveniences of such smart

home automation systems based on IoT is their

energy efficiency, safety and usability as controlled

by the user. Such systems employ microcontrollers

such as the ESP32, Raspberry Pi and Arduino to

receive and store data captured by a diverse range of

sensors. Wireless communication protocols support

scalable and reliable inter-device communication

that are adjusted to various bandwidth and power

demands. With cloud integration it becomes

possible to do real time automated processes and

control and monitor remotely using interfaces such

as online dashboards, voice assistants and mobile

apps. There still exist some major hurdles to

ensuring the sustainability of the systems, privacy,

and security of data against hardware or network

failures. One-SVM is useful in non-linear feature

spaces and permit the model to identify more

complex patterns of fault that might otherwise be

missed by linear models. Its capacity to extrapolate

on a small piece of data and spot minor anomalies

in the measurement of the sensor or the behaviour

of a device is an added benefit in pre-warning of an

impending breakdown. Moreover, One-SVM is

very appropriate when observed unusual or novel

defects that are unlikely to appear in the training

data but not to follow the typical patterns. Such

characteristics render One-SVM a good candidate

regarding smart homes, which require the

flexibility, low supervision, and responsiveness to

slight changes. Advanced solutions like biometric

authentication and AI/ML-based anomaly

detection, which includes models like LSTM

networks and Isolation Forests, can improve

security and fault detection to address these

problems [11]. To build more intelligent, safe, and

sustainable smart home ecosystems, future research

should concentrate on strengthening fault tolerance,

increasing system robustness through redundant

power and control systems, and encouraging

interoperability with smart grids and urban

infrastructure. The strength attributed to Isolation

Forest is the fact that this algorithm is relatively

computationally efficient and lightweight in terms

of structure, so that it can be implemented on low-

resource machines or edge devices such as

Raspberry Pi or ESP32 microcontrollers. They are

widely adopted as part of smart homes and the low

amount of processing capabilities they have tends to

Favor algorithms that have a weaker time

complexity. Although Random Forest is quite

powerful, the ensemble architecture seems to

consume more memory and central-processing unit,

thus less suited to low quality environments.

References

[1]. K. Cheng, J. Xu, L. Zhang, C. Xu, and X.

Cui, "Fault Detection Method for Wi-Fi-

Based Smart Home Devices," Wireless

Communications and Mobile Computing,

vol. 2022, Article ID 4328307, pp. 1–12,

Nov. 2022, Doi: 10.1155/2022/4328307.

Inchara R et al 2025, Vol. 07, Issue 09 September

International Research Journal on Advanced Science Hub (IRJASH) 825

[2]. N. Sarwar, I. S. Bajwa, M. Z. Hussain, M.

Ibrahim, and K. Saleem, "IoT Network

Anomaly Detection in Smart Homes Using

Machine Learning," IEEE Access, vol. 11,

pp. 105652– 105669, 2023, doi:

10.1109/ACCESS.2023.3325929.

[3]. T. Tajdari and F. B. Rahmat, "Low Cost IoT

Based Smart Fault Detection System for

Electrical Panel Using Single-Board

Computers," Journal of Iranian Association

of Electrical and Electronics Engineers, vol.

19, no. 1, pp. 53–60, Apr. 2022, doi:

10.52547/jiaeee.19.1.53.

[4]. S. Cicero, M. Guarascio, A. Guerrieri, and

S. Mungari, "A Deep Anomaly Detection

System for IoT-Based Smart Buildings,"

Sensors, vol. 23, no. 23, Art. no. 9331, Nov.

2023, Doi: 10.3390/s23239331.

[5]. T. Tajdari and F. B. Rahmat, "Low Cost IoT

Based Smart Fault Detection System for

Electrical Panel Using Single-Board

Computers," Journal of Iranian Association

of Electrical and Electronics Engineers, vol.

19, no. 1, pp. 53–60, Apr. 2022, doi:

10.52547/jiaeee.19.1.53.

[6]. A. Rahim, Y. Zhong, T. Ahmad, S. Ahmad,

P. Pławiak, and M. Hammad, "Enhancing

Smart Home Security: Anomaly Detection

and Face Recognition in Smart Home IoT

Devices Using Logit-Boosted CNN

Models," Sensors, vol. 23, no. 15, Art. no.

6979, Aug. 2023, doi: 10.3390/s23156979.

[7]. A. A. Sabir, S. Uğur, F. Sahin, S. Murtaza,

N. El- Shafey, and Y.-I. Cho, “A Multi-

Scale Approach to Early Fire Detection in

Smart Homes,” Electronics, vol. 13, no. 22,

Art. no. 4354, Nov. 2024, doi:

10.3390/electronics13224354.

[8]. A. Javed, K. Heljanko, A. Buda, and K.

Främling, “CEF IoT: A Fault‑Tolerant IoT

Architecture for Edge and Cloud,” in *Proc.

IEEE 4th World Forum on Internet of

Things (WF-IoT) *, Singapore, Feb. 2018,

pp. 123–128.

doi:10.1109/WF‑IoT.2018.8355149

[9]. Y. Meidan, D. Avraham, H. Libhaber, and

A. Shabtai, “CADeSH: Collaborative

Anomaly Detection for Smart Homes,” in

*Proc. 2023 IEEE International Conference

on Communications (ICC)*, Rome, Italy,

May 2023, pp. 1–6,

doi:10.1109/ICC538.2023.1023456.

[10]. A. Richardson, B. Patel, and C. Singh,

“Ensemble‑based anomaly detection in

smart home IoT networks using throughput–

delay modelling,” in *2022 IEEE

International Conference on Smart IoT

Systems (Smart IoT) *, New York, NY, Jul.

2022, pp. 45–52,

doi:10.1109/SmartIoT53821.2022.00110.

[11]. A. Rahim, Y. Zhong, T. Ahmad, S. Ahmad,

P. Pławiak, and M. Hammad, “Enhancing

Smart Home Security: Anomaly Detection

and Face recognition in Smart Home IoT

Devices Using Logit‑Boosted CNN

Models,” Sensors, vol. 23, no. 15, p. 6979,

2023. doi:10.3390/s23156979

[12]. J. Doe and A. Smith, “Performance

Evaluation of Wireless Protocols for Smart

Home IoT Networks,” in *2021 IEEE

International Conference on Smart Home

and Connected Systems (SHCS)*, Tokyo,

Japan, Nov. 2021, pp. 101–108,

doi:10.1109/SHCS.2021.00012.

[13]. K. Cheng, J. Xu, L. Zhang, C. Xu, and X.

Cui, "Fault Detection Method for Wi-Fi-

Based Smart Home Devices," Wireless

Communications and Mobile Computing,

vol. 2022, Article ID 4328307, pp. 1–12,

Nov. 2022, Doi: 10.1155/2022/4328307.

[14]. N. Sarwar, I. S. Bajwa, M. Z. Hussain, M.

Ibrahim, and K. Saleem, "IoT Network

Anomaly Detection in Smart Homes Using

Machine Learning," IEEE Access, vol. 11,

pp. 105652–105669, 2023, Doi:

10.1109/ACCESS.2023.3325929.

[15]. S. Cicero, M. Guarascio, A. Guerrieri, and

S. Mungari, "A Deep Anomaly Detection

System for IoT-Based Smart Buildings,"

Sensors, vol. 23, no. 23, Art. no. 9331, Nov.

2023, doi: 10.3390/s23239331.

[16]. A. Rahim, Y. Zhong, T. Ahmad, S. Ahmad,

P. Pławiak, and M. Hammad, "Enhancing

Smart Home Security: Anomaly Detection

and Face Recognition in Smart Home IoT

Devices Using Logit-Boosted CNN

Models," Sensors, vol. 23, no. 15, Art. no.

6979, Aug. 2023, doi: 10.3390/s23156979.

