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1. Introduction 

Smart Home System is a cyber-physical 

infrastructure comprising embedded systems, the 

Internet of Things communication protocol, and 

cloud computing tech that enables automation, 

monitoring, and controlling the environment and 

management in residential buildings. The system 

includes networks of connected smart devices and 

appliances with microcontroller, wireless interface, 

sensors, actuators and control algorithms. Washing 

machines, ovens, HVAC units, and refrigerators can 

be considered smart appliances that are embarked 

on the real-time systems with tightened timing, 

safety, and energy limitations. They all have a 

microcontroller or system on a chip (SoC) like 

STM32 or ESP32 along with a real time operating  

 

system like Free RTOS, etc. The Wi-Fi, Zigbee, and 

BLE modules offer the communication capabilities 

and the Internet-of-Things (IoT) standards such as 

MQTT, CoAP, and LwM2M provide efficient 

telemetry, IoT device control, and over-the-air 

(OTA) firmware upgrade. The latest generation 

smart home systems combine large sets of 

interconnected IoT devices, sensors, actuators, and 

control hubs to provide automation, energy 

efficiency, and interactive experience to the user. 

Nonetheless, this complexity ushers in various 

possible faults that may undermine system 

reliability and safety. These prevalent types of 

hardware faults are sensor drift, stuck-at errors, 

stuck actuators, and power supply inconsistency. 

The problems with communication can be 

introduced by the loss of packets, the lack of 
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This paper includes an IoT-based smart house system to detect faults in real 

time with the help of embedded platforms including. It incorporates the 

environmental, electrical, and operation sensors to detect abnormalities and 

failures of the home facilities and equipment. NODE to NODE 

communication is facilitated with BLE, Zigbee, Z-Wave and Wi-Fi that is 

optimized to support different power and bandwidth demands. Firmware is 

run on microcontrollers, which have a capability to interface low-level 

sensors and do edge processing in C/C++, or Python. Advanced diagnostics 

are done on complex components based on embedded Linux and either 

Python or JavaScript. The cloud services such as AWS IoT offer access at a 

distance, data recordings, and fault classification based on machine learning. 

Scalable and modular system architecture ensures powerful and effective 

fault detection in a smart home setting. Isolation Forest and LSTM neural 

networks for sensor problem diagnosis and predictive maintenance. Network 

adaptability is increased by local fallback strategies, watchdog timers, and 

secure firmware updates. This research supports the development of smart 

home systems which are scalable, safe, and intelligent. 
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latency, or the other wireless protocol mismatches 

on the Zigbee, BLE, Z-Wave, or Wi-Fi network [12] 

Shown in Figure 1.

 

 

 
Figure 1 Block diagram of Smart Home System 

 

Faults in data like incorrect sensor values, data 

corruption or data loss and problems in time 

synchronization also prevent proper decision 

making. The remote control, monitoring tasks may 

also fail due to cloud integration errors, like API-

related errors, losing a command of voice 

assistance, or even an expired authentication token. 

The occurrence of these temporary or permanent 

faults demonstrates the high urgency of supports to 

demonstrate the greatest level of fault tolerance, 

responsiveness, and resiliency of a system by 

introducing real-time intelligent fault detection 

mechanism in smart home settings [8]. The recent 

progress in machine learning (ML) and deep 

learning (DL) allowed the implementation of 

intelligent systems of fault detection operating in 

real time and based on edge, fog, or cloud 

infrastructures [9]. Such methods are based on the 

anomaly detection represented by throughput-delay 

model, ensemble classifiers and convolutional 

neural networks (CNNs), and sparse or hybrid 

autoencoders [10]. The availability of such smart 

models with low-end devices, such as Raspberry Pi 

and ESP32 also improves the accessibility and 

scalability of smart fault detection frameworks. The 

goal of the paper is to contribute to this field by 

consolidating various strategies adopted in the 

available literature and suggesting a centralized 

model that would effectively identify operational 

errors in heterogeneous smart homes. 

2. Literature Survey 

The spread of the Internet of Things devices makes 

it possible to increase comfort, automation, and 

energy efficiency with the help of smart home 

systems. Nonetheless, the fact that heterogeneous 

sensors, actuators and communication protocols are 

intricately interconnected undermines the 

likelihood that faults of various kinds may occur to 

corrupt system performance and safety of the user. 

The popular causes of the faults in smart home 

settings are related to the failure of hardware, 

communication jam, software bug or interference in 

the settings. According to Cheng et al. Wi-Fi smart 

home devices are prone to crashes and 

disconnections since the environment in which they 

are deployed is dynamic and the wireless 

connection is unstable [1]. To overcome these 

shortcomings, machine learning (ML) and deep 

learning (DL) techniques have been increasingly 

popular due to the capability to define normal 

behavioural patterns and detect abnormal in real 

time. Sarwar et al. suggests a two-level architecture 

that deploys various classifiers such as Random 

Forest, AdaBoost, and LSTM with high recall and 

F1-scores on datasets such as UNSW BoT-IoT [2]. 

There are also considerations to low-cost, edge-

based detection frameworks that enhance 

scalability. Tajdari et al. designed a raspberry Pi 

based fault detection system that monitored 

electrical panels in real time and controlled the 
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deployment of versions to implement fault 

responses when latency is unacceptable and when 

the response is localized and cloud independent [3]. 

The traditional fault detection strategies are loosely 

classified into signal-processing-based, 

mathematical as well as intelligent data-based 

systems. Signal-based methods working on the 

pattern analysis (vibration, noise, voltage, etc) and 

model-based methods with the help of 

statistic/physical models compare the real-time 

behaviour. Cheng et al. identify the issue of 

selecting the parameter and the inability of such 

traditional approaches to capture complexity of 

smart environments. Other studies are also 

dedicated to the optimization of data transfer and 

network-level activity to conclude on device health. 

Cheng et al. present a fault detection technique in a 

form of Throughput and Delay Distribution (TDD), 

which records the Wi-Fi packet flows to detect the 

status of smart devices. The method measures real 

time throughput and delay against statistical profiles 

that are expected, within Gaussian modelling of 

anomaly classes. In this method, the accuracy of 

detection is high and few monitoring parameters are 

required [1]. Because deep learning can model high-

volume results of complex sensors, it has become a 

dominant factor in fault detection of smart home 

systems. Cicero et al. designed lightweight Sparse 

U-Net architecture-based unsupervised anomaly 

detection system that can be used to detect 

malfunctions in sensors and excessively 

unfavourable conditions in the environment in real-

time. Their edge-deployable architecture does not 

involve the use of cloud infrastructure and labelled 

data, which is efficient to use in practical smart 

building applications [4]. Tajdari and Rahmat 

suggested an affordable IoT-based sensor network 

to detect the faults in electric boards with the 

assistance of single-board computers such as 

Raspberry Pi. Sensor parameters monitored in the 

system include voltage and temperature in real-time 

and complete fault identification is performed 

through a local processing unit, thus minimizing the 

need to communicate continuously with the cloud. 

Its execution is based on use of very basic electronic 

circuits and cloud connectivity through Duplicity as 

a remote access [5]. Rahim et al. developed an 

abnormality detection and face recognition system 

of IoT devices on smart homes based on logit-

boosted convolutional neural networks (CNNs). 

The framework employs a sort of logistic 

regression, gradient-boosting classifier, and CNN to 

recognize anomalies at device level, with or without 

the support of cybersecurity experts. The system 

was highly accurate after being trained on labelled 

sensor data (during anomaly detection, it reached a 

94 percent accuracy), presenting an excellent 

possibility of real-time fault classification. The 

presented work showcases the importance of 

machine learning and biometric intelligence 

combination to develop smarter and safer homes 

[6]. Cheng et al. [13] described the cost-effective 

technique of fault detection of Wi-Fi-based IoT 

devices of smart home using channel state 

information (CSI) accompanied with a Time 

Division Duplex (TDD) strategy. The technique 

identifies the malfunctions of the devices in real 

time through the analysis of the Wi-Fi signal 

variations, which eradicates the requirement of 

other sensors. Experiments showed high-accuracy 

rates, robustness to environmental changes, 

scalability, and made it a viable solution to 

proactive fault management in home environments 

where a smart home exists. Tajdari and Rahmat [14] 

designed a low cost IoT based ecosystem of fault 

detection system in electrical panels based on the 

use of single-board computers. The system 

combines the IoT sensors and computational units 

to capture data and diagnose faults in smart 

monitoring, which is to notify timely fault detection. 

The given method will lower downtime and 

enhance safety and maintenance, Additionally, 

since it uses single-board computers, the 

applications will be affordable and simple to roll out 

in smart homes and buildings. Cicero et al. [15] had 

developed a deep learning system on anomaly 

detection of IoT enabled smart buildings that fixes 

anomalies on faults, fires, and unauthorized access. 

The system runs a lightweight U-Net architecture 

based on Sparse network to perform abnormal 

detection in unsupervised anomaly detection on 

sensor networks data without using any labelled 

training data. Designed to run on edge computing 

device, it can allow detection and reaction in real-

time. It was experimentally proved that it is 

effective in reinforcing safety, energy efficiency, 

and occupant comfort as an example of the potential 

of applying artificial intelligence with edge 

computing to create scalable control of its smart 

buildings. The paper [16] proposes six 
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combinations of logistic regression and gradient-

boosted CNN to have face recognition with 

anomaly detection integrity within a smart home 

IoT environment. The LR-HGBC-CNN model has 

the best measure of performance with 94 percent in 

anomaly detection and 88 percent in facial 

authentication. This combination of monitoring of 

devices behaviour and biometric verification 

promotes the effective functioning of the system 

and its enhanced security in intelligent habitation. 

3. Methodology 

The smart home systems are put up with various 

programming environments depending on the 

complexity of components. Basic equipment such 

as motion detectors, smart plugs, or temperature 

sensors is usually coded in C or C++ in either 

lightweight RTOS (e.g., Free RTOS) or bare metals 

using IDEs such as MPLAB X, Keil vision or 

STM32CubeIDE. They are based on 

microcontrollers like STM32, ESP8266 or PIC with 

raw hardware access through timers, interrupts and 

GPIO, there is just no operating system involved. 

More advance devices that require networking or 

multitasking (e.g. smart lights, locks, thermostats) 

are developed using RTOS environments. It is 

programmed in C/C++, usually by VS Code + 

Platform IO or from the vendor tools, and the 

firmware is downloaded through a USB port, JTAG 

programming, or SWD. Programming for more 

complex smart home devices, including video 

doorbells, smart displays, smart cameras, or home 

hubs, is typically done in an embedded Linux 

environment. Linux-based operating systems 

(Yocto Project or Build root) are installed on these 

computers, which have CPUs like the ARM Cortex-

A. Higher-level application logic may be 

implemented in Python, JavaScript (Node.js), or 

even Java, while drivers and system software are 

written in C or C++. As well, deep learning (e.g. 

convolutional neural networks (CNNs) and sparse 

U-Net structures) are incorporated to achieve high-

dimensional time-series and image-based defects, to 

aid in more accurate detection of weak or changing 

faults. These models may be deployed on-edge 

systems to provide quick response latency or to the 

cloud where it may further analyse and learn in the 

long run. When a fault is identified, the system 

sends alerts to the nearest location through actuators 

or in a distant location through a mobile phone. 

Automated responses like resets of the devices or 

switch fallback are carried out depending on the 

case to provide stability to the system. Performance 

of the detection framework is measured in terms of 

accuracy, recall, precision, F1-score and response 

time. Such a multi-level approach will guarantee a 

robust, flexible, and scalable fault detection, 

depending on the complexity of smart home 

environment [4]. Based on the processing power, 

memory, and functional needs of the component 

being created, the programming environment varies 

from bare-metal C for basic sensor nodes to full 

Linux and cloud-integrated stacks for high-end 

devices. 

4. Discussion and Future Works 

The proposed smart home system uses a variety of 

sensors, Linux-based controllers like Raspberry Pi, 

and other appropriate embedded platforms to 

combine gas leak detection with fire hazard 

monitoring. It consistently identifies fire dangers 

and flammable gasses (for example, using 

temperature or flame sensors), setting off safety 

measures like alerts and notifications. Platforms 

based on Linux provide sophisticated features like 

multitasking, data logging, remote monitoring, and 

simple interaction with cloud services or mobile 

apps. GPIO control, open-source tools, and 

compatibility for protocols like MQTT, HTTP, and 

Bluetooth are all advantages of devices like the 

Raspberry Pi. Depending on performance, budget, 

or available space, other embedded Linux boards 

can also be modified [7]. Under typical 

circumstances, sensor performance was largely 

constant; nevertheless, environmental elements like 

humidity, ventilation, or electrical noise may have 

an impact on sensitivity, indicating the need for 

filtering or calibration. Linux systems are flexible, 

but they are not by default real-time, which could 

cause slight lags in applications that need to run 

quickly. In these situations, responsiveness might be 

enhanced via microcontroller-based hybrids or 

lightweight real-time systems. But network 

availability and steady power are still necessary for 

system dependability, highlighting the necessity of 

backup controllers or watchdog timers. At this 

instance, the system cannot afford idle time caused 

by the failure of its network or operating system 

breakdowns or worse yet power failure. Subsequent 

designs can have re-redundant microcontrollers; 

even re-redundant power reserves the critical 

operations can still be run in the event of those 

outages. The problem is false positive; environment 

change which causes the sensors to provide the 
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erroneous signal too. Such additional features of the 

system as data analytics, recording errors, and 

abnormality detecting algorithms would be 

beneficial to implement.  

 

Table 1 Comparison among different fault detection algorithm 

Criteria 
Isolation 
Forest 

One-Class 
SVM 

Random 
Forest 

Decision 
Tree 

ANN 

Type Unsupervised Unsupervised Supervised Supervised Supervised 
Labelled Data No No Yes Yes Yes 

Unknown 
Faults 

Yes Yes No No Limited 

Imbalance 
Handling 

High High 
Needs 
tuning 

Poor 
Complex 

setup 
Computational 

Efficiency 
Light Moderate Heavy Fast Heavy 

Anomaly 
Score 

Built-in Yes No No Complex 

Ease of Edge 
Deployment 

Yes Moderate No Yes No 

Unlabelled 
Use 

Excellent Excellent No No No 

Identify the issues at the early stage and diagnose 

non typical operations of sensors more accurately. 

The algorithms are still good ones; however, they 

are rather run on relatively small hardware and, in 

turn, are effective only in case only little data is 

present. In case it is provided with considerable 

amounts of processing power, deep learning 

methods should be used as primary. Amongst them, 

LSTM networks and Autoencoders stand out due to 

their expertise in time-series data and may therefore 

be able to pick up complex faults that would be 

overlooked by any other approaches. Well, real time 

applications are an entirely different though. 

Accuracy is not all here but you also require a 

method to produce results as rapidly as possible. 

Those traditional threshold methods remain the 

favourites in that arena, because they are relatively 

simple and fast. The data sets are generated with 

functions to create different patterns and 

associations. The main difference between different 

faults detection algorithms that are prevalent in 

smart home applications is demonstrated in the 

Table 1. 

4.1. Threshold + Moving Average 

The moving average, within sensor data, focuses on 

the long-term direction with less focus on short-

term fluctuation.  By filtering the information and 

using a predetermined threshold, abnormal 

behaviour (e.g. such an abrupt gas leak or 

temperature increase) can be detected well in time. 

The approach is simple to implement, lightweight in 

computation and suitable to real-time embedded 

systems which have resource limitations. The size 

of windows affects the number of recent values 

averaged to damp short-term oscillations: a large 

window acts as a strong filter but will respond too 

slowly to a change; a small window is faster to a 

change but will have more noise or noise-like 

behaviour. The threshold is the amount by which the 

raw data and smoothed data must differ to flag an 

anomaly; it determines the level of sensitivity of the 

error detection by smaller numbers of 

differentiation meaning that every little change 

being detected, the higher the numbers, the higher 

the sensitivity to significant deviations. Combined 

they are both responsive and tolerant to noise in 

detecting abnormal sensor behaviour Shown in 

Figure 2. 

 

 
Figure 2 Block Python Code Snippet of Moving 

Algorithm Function 
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Figure 3 shows us threshold + moving average 

processing the raw data and giving the filtered data 

with two fault values being detected and removed in 

the filtered data. 

 

 
Figure 3 Threshold + Moving Algorithm graph 

 

4.2. Isolation Forest or One-Class SVM 

To find observations isolated and anomalies more 

obvious, Isolation Forest divides the data and 

randomly selects features. On the contrast, One-

Class SVM trains a margin around average data and 

labels all data outside this average margin as 

untypical. The methods are useful in the context of 

smart home applications in which faults are rare yet 

critical as the methods are effective in diagnosing 

aberrant behaviours in the sensors or the system 

without the need to supply labelled fault data. The 

isolation forest and One-class SVM are the machine 

learning techniques applicable to identify 

abnormalities in smart homes.  

 

 
Figure 4 Block Isolation Forest function with 

parameters 

 

 
Figure 5 One-Class SVM function with 

parameter 

 

They do not require labelled data to operate, and this 

makes them applicable in cases where actual faults 

are scarce. Isolation forest operates by randomly 

dividing the data into creating different-looking 

points than other data and, as a result, these types of 

points are labelled as anomalies. The most 

significant parameter of Isolation Forest is known as 

contamination (Figure 4. Block Isolation Forest 

function with parameters), and this parameter 

informs the model about the target percentage of 

data that should be unusual. The larger the value of 

contamination the more data will be considered as 

suspicious by the model. On the contrary, One-

Class SVM attempts to learn the normal appearance 

of data by surrounding it with a boundary. Anything 

beyond this is considered as an anomaly. 

 

 
Figure 6 Isolation Forest and One-Class SVM 

graph 

 

Two parameters of One-Class SVM are gamma and 

nu (Figure 5. One-Class SVM function with 

parameter). The value of nu regulates the amount of 

data that may be permitted beyond the line (the 

number of anomalies to be expected) and the value 

of gamma the closeness or looseness of the line-the 

smaller gamma, the smoother, the larger gamma, the 

more sensitive. In smart homes, such models can be 

applied to detect an anomaly such as gas leak, 

malfunctioned appliance, or odd movement patterns 

even when no previous instances of faults exist. In 

the Figure 6. Isolation Forest and One-Class SVM 

graph, the red dot is normal data, and the blue one 

is those points described as different or unexpected 

by the models. The two models identify the outliers 

although in varied methods. Such approach can be 

applied to practical systems such as smart homes to 

detect anomalous activity or even faults. 

4.3. LSTM or Autoencoder Neural Networks 

LSTM (Long Short-Term Memory) networks and 

autoencoders as deep learning architectures are 
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good at both reconstruction of inputs and learning 

temporal structure in the inputs. In the detection of 

defects, LSTMs look forward to the sensor 

magnitudes whereas they rely on previous 

chronologies and change points to anomalous. A 

class of autoencoders computes the reconstruction 

error having reconstructed sensor data, and higher 

values can reflect issues. Such techniques are ideal 

as part of advanced smart home monitoring as they 

can sense complex, time-sensitive relationship and 

detect normal activity Shown in Figure 7. 

 

 
Figure 7 Echoes running its full cycle 

 

The Long Short-Term Memory (LSTM) is a form of 

recurrent neural network (RNN) that performs 

especially well with operations on sequence data, 

including times series data. In anomaly detection   

context, LSTMs are trained to learn the regular data 

of a signal by regressing input data sequences. The 

parameters and their choices play significant roles 

in the learning performance of the LSTM model: 

epochs and number of iterations through the entire 

training dataset that the model needs to pass through 

in order to gradually minimize the reconstruction 

error, batch size that determines how many training 

samples should be processed before any of the 

internal parameters are updated, how much memory 

should be consumed and how quickly convergence 

can be achieved, timesteps that define how many 

past data points are taken into consideration by the 

model at the same time and latent dim (or the 

number of units in the LSTM layer) that determine 

the capacity of the model to capture (Figure 8). 

These parameters cooperate with each other to 

allow the LSTM model to memorize normal 

patterns of the signal in such a way that the crucial 

deviations could also be detected as anomalies. 

Figure 9 plot indicates how an LSTM Autoencoder 

was used to detect anomalies in time-series data. 

The orange signal is noisy input signal, the green 

dashed signal is the original clean signal, and the 

blue signal is the reconstructed signal of the 

predicted by the model. In case the reconstruction 

does not correspond with the input, it is a sign that 

an anomaly might be detected and, thus, can help 

reveal the uncharacteristic patterns or flaws in the 

systems, such as smart homes. 

 

 

Figure 8 LSTM Function 

 

 

Figure 9 LSTM/Autoencoder Graph 

 

To increase the resilience of smart home systems to 

network problems, networked equipment is to be 

supported both to recover locally on failure of 

essential functions and to reconnect after network 

disconnection, with retries and exponential backoff 

very common auto-reconnect mechanisms, and 

network outage events should be logged and users 

warned via LEDs or via apps that action is required. 

Unresponsive modules have a watchdog timer that 

can be restarted, and backup power protects the 

system, and secure firmware updates are capable of 

future enhancements to recovery. Figure 10 shows 

smart home dashboard, a flaw in the Living Room 

Thermostat has been highlighted where presence of 

problems such as voltage spikes and sensor errors 

has been encountered. These issues will 

automatically be flagged by the system and be 

categorized as to the urgency thereof and serve as 
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an automatic reminder to the user, thus maintaining 

safety and being able to operate the home devices in 

a smooth manner. In embedded and smart home 

systems, a fault lookup table is a preset data 

structure that maps fault circumstances to associated 

fault codes, severity levels, and remedial actions. It 

serves as a quick reference guide that aids the 

system in identifying and effectively addressing 

identified issues. Smart home systems Fault looks 

up tables are system specific. Less complex 

embedded solutions are hardcoded tables (e.g. C 

structs or arrays), whereas more open ones use 

configuration files (YAML, JSON or .in). 

 

 
Figure 10 Webpage Dashboard Showing Faults 

 

 Intelligent behaviour under novel circumstances 

and predictable error handling are made possible by 

combining static rules with adaptive ML flags. 

Lastly, by recording CPU usage, sensor status, and 

connectivity, a system health monitoring module 

can improve long-term dependability and safety by 

spotting early failure indicators and sending out 

preventive maintenance notifications. All these 

code and algorithms are scripted to meet memory 

requirements of the system which is a challenging 

task involving code optimization at different levels. 

Conclusion  

Among the notable conveniences of such smart 

home automation systems based on IoT is their 

energy efficiency, safety and usability as controlled 

by the user. Such systems employ microcontrollers 

such as the ESP32, Raspberry Pi and Arduino to 

receive and store data captured by a diverse range of 

sensors. Wireless communication protocols support 

scalable and reliable inter-device communication 

that are adjusted to various bandwidth and power 

demands. With cloud integration it becomes 

possible to do real time automated processes and 

control and monitor remotely using interfaces such 

as online dashboards, voice assistants and mobile 

apps. There still exist some major hurdles to 

ensuring the sustainability of the systems, privacy, 

and security of data against hardware or network 

failures. One-SVM is useful in non-linear feature 

spaces and permit the model to identify more 

complex patterns of fault that might otherwise be 

missed by linear models. Its capacity to extrapolate 

on a small piece of data and spot minor anomalies 

in the measurement of the sensor or the behaviour 

of a device is an added benefit in pre-warning of an 

impending breakdown. Moreover, One-SVM is 

very appropriate when observed unusual or novel 

defects that are unlikely to appear in the training 

data but not to follow the typical patterns. Such 

characteristics render One-SVM a good candidate 

regarding smart homes, which require the 

flexibility, low supervision, and responsiveness to 

slight changes. Advanced solutions like biometric 

authentication and AI/ML-based anomaly 

detection, which includes models like LSTM 

networks and Isolation Forests, can improve 

security and fault detection to address these 

problems [11]. To build more intelligent, safe, and 

sustainable smart home ecosystems, future research 

should concentrate on strengthening fault tolerance, 

increasing system robustness through redundant 

power and control systems, and encouraging 

interoperability with smart grids and urban 

infrastructure. The strength attributed to Isolation 

Forest is the fact that this algorithm is relatively 

computationally efficient and lightweight in terms 

of structure, so that it can be implemented on low-

resource machines or edge devices such as 

Raspberry Pi or ESP32 microcontrollers. They are 

widely adopted as part of smart homes and the low 

amount of processing capabilities they have tends to 

Favor algorithms that have a weaker time 

complexity. Although Random Forest is quite 

powerful, the ensemble architecture seems to 

consume more memory and central-processing unit, 

thus less suited to low quality environments. 
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