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1. Introduction 

Image inpainting is a critical task in computer 

vision, focusing on reconstructing missing or 

damaged regions in an image while preserving its 

structural and perceptual integrity. It has significant 

applications in digital restoration, medical imaging, 

satellite imagery, and autonomous vision systems. 

The ability to accurately fill missing regions is 

essential in heritage conservation, where ancient 

artworks require digital restoration, and in medical 

diagnostics, where incomplete MRI or CT scans 

must be reconstructed for precise analysis. 

However, achieving high-quality inpainting 

remains a challenge due to texture inconsistency,  

 

unnatural artifact generation, and loss of fine 

structural details. Several deep learning-based 

inpainting methods have been proposed, with 

Generative Adversarial Networks (GANs) being 

widely used due to their ability to generate realistic 

textures [1]. While GAN-based models such as 

GAN-Inpaint [9] and Painter Net [5] have improved 

image restoration, they struggle with preserving fine 

details and handling complex occlusions, often 

resulting in blurry or distorted outputs. 

Transformer-based inpainting models, such as 

Swarm-Optimized Transformer GAN [13], have 

demonstrated improved contextual awareness, yet 
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Image inpainting is a computer vision technique that aims to fill in missing 

or damaged areas of an image with plausible content. This paper presents the 

results and analysis of an Adaptive Mask Optimization-Driven Hybrid GAN 

designed to enhance image inpainting quality. The model integrates dynamic 

mask refinement with swarm-based hyperparameter tuning and a multi-

component loss formulation to improve structural accuracy, texture realism, 

and computational efficiency. Evaluated on the Paris Street View dataset with 

cross-validation on three additional datasets, the proposed model achieved a 

PSNR of 34.72 dB, SSIM of 0.942, and EPI of 0.087, surpassing GAN-Inpaint, 

Painter Net, Hybrid Swarming Algorithm, and Swarm-Optimized 

Transformer GAN. Cross-dataset evaluation confirmed generalization across 

urban, artistic, and natural scenes. Ablation studies revealed that adaptive 

mask optimization and swarm-based tuning significantly improve perceptual 

quality, while computational analysis showed a balanced trade-off between 

accuracy and inference time. These results establish the model as a robust, 

efficient, and generalizable solution for applications in digital restoration, 

medical imaging, and remote sensing. 
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they suffer from high computational costs and 

training instability. Additionally, mask-based 

optimization techniques, like Mask Optimization 

GAN [1], attempt to enhance inpainting efficiency 

but fail to adapt dynamically to varying occlusion 

patterns. These challenges indicate a critical need 

for an inpainting model that balances structural 

accuracy, perceptual realism, and computational 

efficiency. To address these limitations, this paper 

proposes the Adaptive Mask Optimization-Driven 

Hybrid GAN, incorporating Swarm-Based 

Hyperparameter Tuning and an Enhanced Loss 

Function. Adaptive Mask Optimization 

dynamically refines missing regions based on 

contextual dependencies, ensuring seamless 

blending between reconstructed and existing areas. 

The Swarm-Based Optimization fine-tunes 

hyperparameters during training, improving model 

stability and convergence. Additionally, an 

Enhanced Loss Function balances perceptual 

quality and pixel-level reconstruction, minimizing 

artifacts and improving realism. 

2. Method  

The Adaptive Mask Optimization-Driven Hybrid 

GAN is designed for high-fidelity image inpainting 

and, integrating consists of 

• A Hybrid GAN framework (combining 

CNN-based generators with attention-based 

discriminators). 

• Adaptive Mask Optimization (region-based 

sampling for more natural missing area 

identification). 

• Enhanced Loss Function (balancing 

perceptual, adversarial, and contextual 

losses). 

• Swarm-Based Hyperparameter Tuning 

(optimizing model parameters 

dynamically). 

• Contrast-Aware Augmentation (to improve 

generalization in diverse image conditions). 

The model was trained on the Paris Street View 

Dataset, with cross-validation performed on the Art 

Inpainting Dataset (DPG) and three additional 

datasets to evaluate robustness. 

3. Results and Discussion  

3.1. Results  

The proposed Hybrid GAN model restores damaged 

regions in images through a step-by-step inpainting 

process. It refines details gradually, ensuring clear 

textures and accurate structures. The use of 

enhanced loss functions and swarm-based tuning 

helps reduce errors and improve quality. Figure 1 

shows the stepwise inpainting process, where the 

model progressively removes noise and occlusions 

to restore damaged images. Each step refines 

textures and structures, ensuring smooth transitions 

and realistic details. The final enhanced output 

closely matches the original, demonstrating the 

model’s ability to reconstruct missing regions with 

high accuracy. 

 

 

 

 

 
Figure 1 Progressive Restoration Results Using 

the Proposed Hybrid GAN-based inpainting 

model. 
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The proposed Adaptive Mask Optimization-Driven 

Hybrid GAN was evaluated on the Paris Street View 

Dataset and validated on additional datasets using 5-

fold cross-validation. The model achieved superior 

performance in structural accuracy, perceptual 

quality, and artifact reduction, as reflected in the  

 

following evaluation metrics. The impact of 

Swarm-Based Hyperparameter Optimization on the 

proposed Hybrid GAN model is summarized in 

Table 1. The model demonstrates significant 

improvements across multiple evaluation metrics. 

 

Table 1 Performance Impact of Swarm-Based Optimization on Hybrid GAN Across Multiple Metrics. 

Metric 

Hybrid GAN (Proposed 

Model) 

Before Swarm Optimization 

Hybrid GAN (Proposed 

Model) 

After Swarm Optimization 

Peak Signal-to-Noise 

Ratio (PSNR) 
32.10 dB 34.72 dB 

Structural Similarity Index 

(SSIM) 
0.901 0.942 

Error Perception Index 

(EPI) 
0.102 0.087 

Contextual Loss 0.029 0.021 

Total Variation (TV) Loss 0.0083 0.0068 

Figure 2 illustrates the impact of Swarm-Based 

Hyperparameter Optimization on PSNR, SSIM, and 

EPI. The left subfigure represents the model’s 

baseline performance, while the right subfigure 

highlights improvements post-optimization. PSNR 

increased from 32.10 dB to 34.72 dB, indicating 

sharper and more detailed restorations.  SSIM 

improved from 0.901 to 0.942, confirming better 

texture consistency. EPI decreased from 0.102 to 

0.087, demonstrating reduced perceptual 

distortions. These enhancements indicate an 

improvement in inpainting quality after 

optimization. 

 

 
Figure 2 Performance Metrics Before and After 

Swarm Optimization, Showing Improved 

PSNR, SSIM, and reduced EPI for better 

inpainting quality. 

Figure 3 visualizes the Contextual Loss and Total 

Variation (TV) Loss before and after Swarm 

Optimization. The left subfigure represents the loss 

values without optimization, whereas the right 

subfigure illustrates the refined performance post-

optimization. Contextual Loss reduced from 0.029 

to 0.021, ensuring smoother blending of inpainted 

regions. TV Loss dropped from 0.0083 to 0.0068, 

eliminating harsh edges and improving texture 

consistency. The reduction in loss values 

demonstrates the effectiveness of adaptive tuning in 

minimizing inconsistencies and artifacts in the in 

painted regions. 

 

 
Figure 3 Visualizes the Contextual Loss and 

Total Variation (TV) Loss before and after 

Swarm Optimization 
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Figure 4 consists of two visualizations a heatmap 

showing metric variations before and after Swarm 

Optimization. A bar chart comparing the 

performance shift across PSNR, SSIM, EPI, 

Contextual Loss, and TV Loss. The heatmap 

highlights a significant         performance shift across 

all metrics, while the bar chart visually confirms 

that Swarm     Optimization enhances perceptual 

quality and structural fidelity in restored images. 

 

 
Figure 4 Heatmap and Bar Chart Comparison 

of Metrics Before and After Swarm-Based 

Optimization, Showing Improved PSNR, SSIM, 

& Reduced Losses. 

 

Figure 5 presents a residual plot comparing the 

predicted and actual performance values for PSNR 

and SSIM. The dashed diagonal line (y = x) 

represents perfect prediction, where points lying 

closer indicate higher accuracy.  The low residual 

values confirm that the model’s predictions align 

well with true performance. PSNR and SSIM values 

exhibit minimal deviation, indicating a consistent 

and accurate learning process. Figure 6 compares 

the Contextual Loss and TV Loss before and after 

Swarm Optimization through a scatter plot. The 

reference line (y = x) indicates a baseline, and all 

points fall below this line, showing that loss values 

decreased post-optimization. Contextual Loss and 

TV Loss dropped, confirming that Swarm 

Optimization effectively reduced reconstruction 

inconsistencies. Figure 7 visualizes the training 

trend of PSNR and SSIM over 10 epochs, showing 

model convergence. PSNR increased steadily over 

epochs, indicating progressive improvement in 

image reconstruction quality. SSIM followed a 

similar trend, suggesting improved structural 

integrity and perceptual similarity across epochs. 

Figure 8 presents a violin plot comparing the 

distribution of Contextual Loss and TV Loss before 

and after Swarm Optimization. The narrower shape 

post-optimization indicates lower variance in loss 

values, demonstrating model stability. The shift in 

median values confirms a significant reduction in 

loss metrics after optimization. 

 

 
Figure 5 Residual Plot Comparing the Predicted 

and Actual Performance Values for PSNR and 

SSIM. 

 

 
Figure 6 Compares the Contextual Loss and TV 

Loss Before and After Swarm Optimization 

Through a Scatter Plot. 

 

 
Figure 7 Training Trend of PSNR and SSIM 

Over 10 Epochs 

 

 
Figure 8 Violin plot comparing the distribution 

of Contextual Loss and TV Loss 
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3.1.1. Cross-Evaluation Metrics Across 

Different Datasets 

To assess the model’s generalization capability, we 

conducted cross-validation on multiple datasets. 

The results are summarized in Table 2. 

 

 

 

Table 2 Cross-Evaluation Metrics Across Different Datasets 

Dataset 
PSNR 

(dB) 
SSIM EPI Contextual Loss 

TV 

Loss 

Paris Street View 

(Primary Dataset) 
34.72 0.942 0.087 0.021 0.0068 

Art Inpainting Dataset 

(DPG) 
34.35 0.936 0.091 0.023 0.0071 

Urban Landmark Dataset 33.98 0.932 0.095 0.024 0.0074 

Natural Scene Dataset 34.1 0.938 0.092 0.022 0.007 

 

Figure 9 presents a comparative analysis of PSNR, 

SSIM, and EPI across different datasets to evaluate 

the model’s generalization.  PSNR values remain 

above 33 dB for all datasets, demonstrating 

consistent reconstruction quality. SSIM values stay 

above 0.93, indicating high structural similarity 

across datasets. EPI values remain below 0.10, 

confirming minimal perceptual inconsistencies. 

These findings suggest that the model maintains 

robust performance across different dataset 

distributions. Figure 10 displays a correlation 

heatmap to analyse interdependencies among 

PSNR, SSIM, EPI, Contextual Loss, and TV Loss. 

PSNR and SSIM show a strong positive correlation, 

reinforcing their joint contribution to image quality. 

Contextual Loss and TV Loss exhibit inverse 

relationships with PSNR and SSIM, indicating that 

reducing these losses enhances image fidelity. This 

visualization highlights how different evaluation 

metrics interact within the inpainting framework. 

Figure 11 provides a pairwise scatter plot and 

distribution analysis for all evaluation metrics, 

offering insights into metric relationships. The 

diagonal plots show kernel density estimates (KDE) 

for each metric, illustrating their distribution across 

datasets. The scatter plots depict linear trends 

between performance indicators, confirming 

expected metric correlations. These results further 

validate the consistency of the model’s performance 

across multiple datasets. 

 

 

 

 
Figure 9 Comparative Analysis of PSNR, SSIM, 

and EPI Across Different Datasets 

 

 
Figure 10 Correlation Heatmap of Inter -

Dependencies Among PSNR, SSIM, EPI, 

Contextual Loss & TV Loss 

 

 
Figure 11 Pairwise Scatter Plot and Distribution 

Analysis for All Evaluation Metrics 
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To evaluate the contribution of individual model 

components, an ablation study was conducted by 

removing Adaptive Mask Optimization while 

keeping other configurations unchanged. Table 3 

presents the results of this comparative analysis. 

 

Table 3 Impact of Key Model Components on 

PSNR, SSIM, and EPI                                                        

Ablation Study Results 

Model Variation 
PSNR 

(dB) 
SSIM EPI 

Full Model (Adaptive 

Mask + Hybrid GAN 

+ Swarm 

Optimization) 

34.72 0.942 0.087 

Without Adaptive 

Mask Optimization 
33.5 0.931 0.095 

Without Swarm-Based 

Optimization 
33.7 0.934 0.093 

Without Enhanced 

Loss Function 
32.9 0.926 0.098 

 

The results indicate that removing Adaptive Mask 

Optimization leads to a decrease in PSNR (from 

34.72 dB to 33.5 dB) and SSIM (from 0.942 to 

0.931), while EPI increases (from 0.087 to 0.095). 

These findings suggest that Adaptive Mask 

Optimization plays a crucial role in improving 

reconstruction quality by preserving texture details 

and minimizing perceptual errors. Further analysis 

of these results is provided in the Discussion 

Section. To assess the computational efficiency of 

the proposed model, an evaluation of inference time 

and memory usage was conducted across different 

model configurations.    Table 4 presents a 

comparative analysis of computational 

performance. The results indicate that the full 

model, which incorporates Adaptive Mask 

Optimization, Hybrid GAN, and Swarm 

Optimization, achieves the highest reconstruction 

quality but requires 0.75 sec per image and 280 MB 

of memory. Removing Adaptive Mask 

Optimization reduces memory usage to 250 MB and 

slightly improves inference speed (0.65 sec), but at 

the cost of lower reconstruction accuracy. The 

fastest configuration (0.55 sec/image) is achieved 

by removing the Enhanced Loss Function, but this 

also leads to increased perceptual errors. These 

findings highlight the balance between performance 

quality and computational efficiency, further 

analysed in the Discussion Section. 

 

Table 4 Computational Performance Results 

Model Variation 

Inference 

Time 

(sec/image) 

Memory 

Usage 

(MB) 

Full Model (Adaptive 

Mask + Hybrid GAN + 

Swarm Optimization) 

0.75 sec 280 MB 

Without Adaptive Mask 

Optimization 
0.65 sec 250 MB 

Without Swarm-Based 

Optimization 
0.70 sec 260 MB 

Without Enhanced Loss 

Function 
0.55 sec 230 MB 

 

3.2. Discussion 

To assess the effectiveness of the proposed model, 

a benchmarking comparison was conducted against 

existing inpainting techniques. Table 5 presents the 

performance evaluation using PSNR, SSIM, and 

EPI, highlighting improvements achieved through 

Adaptive Mask Optimization and Swarm-Based 

Optimization.  

3.2.1. Performance Benchmarking & 

Comparisons 

The benchmarking results in Table 5 confirm that 

the Adaptive Mask Optimization-Driven Hybrid 

GAN achieves the highest PSNR (34.72 dB) and 

SSIM (0.942) while maintaining the lowest EPI 

(0.087), demonstrating superior inpainting quality. 

Compared to Zhang et al.’s Hybrid Swarming 

Algorithm (PSNR: 33.8 dB, SSIM: 0.934, EPI: 

0.09) and Liu et al.’s Swarm-Optimized 

Transformer GAN (PSNR: 33.4 dB, SSIM: 0.931, 

EPI: 0.093), the proposed model restores missing 

regions with better texture consistency due to 

adaptive mask refinement and optimized 

hyperparameter tuning. Zhang et al.’s Painter Net 

(PSNR: 33.1 dB, SSIM: 0.926, EPI: 0.097) and 

Shimosato et al.’s Mask Optimization GAN (PSNR: 

32.45 dB, SSIM: 0.918, EPI: 0.102) show lower 

reconstruction accuracy, indicating that while mask-

guided inpainting helps, Swarm-Based 

Optimization further enhances perceptual quality. 

The GAN-Inpaint model by Chen et al. (PSNR: 

31.85 dB, SSIM: 0.91, EPI: 0.109) performs the 

weakest, reinforcing the limitations of conventional 
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GAN-based inpainting in handling complex missing 

regions. These results validate that the combination 

of Adaptive Mask Optimization and Swarm-Based  

 

Tuning leads to more precise restorations, reduced 

distortions, and overall better perceptual fidelity, 

outperforming all benchmarked models. 

 

Table 5 Comparative Benchmarking of Inpainting Performance Across Different Models 

Benchmark Source 

& Reference 
Model Name 

PSNR 

(dB) 
SSIM EPI 

Shimosato et al. [1] Mask Optimization GAN 32.45 0.918 0.102 

Zhang et al. [5] Painter Net 33.1 0.926 0.097 

Chen et al. [9] GAN-In paint 31.85 0.91 0.109 

Liu et al. [13] Swarm-Optimized Transformer GAN 33.4 0.931 0.093 

Zhang et al. [18] Hybrid Swarming Algorithm 33.8 0.934 0.09 

Current Model 
Adaptive Mask Optimization-Driven 

Hybrid GAN 
34.72 0.942 0.087 

The radar chart int Figure 12 visualizes the 

performance variations among different inpainting 

models based on PSNR, SSIM, and EPI scores. It 

highlights the effectiveness of Hybrid GAN models 

in improving image restoration quality. The bar 

chart in Figure 13 compares benchmarking results 

across multiple inpainting models, showing higher 

PSNR and SSIM values for the proposed approach. 

This demonstrates its ability to generate high-

fidelity restored images while minimizing       errors. 

 

 
Figure 12 Radar Chart Comparing 

Benchmarking Metrics (PSNR, SSIM, and EPI) 

Across Different Inpainting Models 

 

 
Figure 13 Bar Chart Benchmarking 

Comparison of PSNR and SSIM Across 

Different Inpainting Models 

3.2.2. Cross-Dataset Generalization 

Analysis 

The proposed model was tested on multiple datasets 

to analyse its ability to generalize across different 

image types. Results indicate strong generalization, 

with PSNR remaining above 33 dB and SSIM 

exceeding 0.93 across all datasets. Best results were 

observed on the Paris Street View dataset (PSNR: 

34.72, SSIM: 0.942, EPI: 0.087). This is expected, 

as the dataset contains structured, well-textured 

urban images, which align well with the model’s 

learning patterns. The Art Inpainting Dataset (DPG) 

also performed well (PSNR: 34.35, SSIM: 0.936), 

confirming that the model effectively restores fine 

artistic textures. Slightly lower performance was 

noted in the Urban Landmark Dataset (PSNR: 

33.98, SSIM: 0.932). This could be due to complex 

structures and lighting variations, which introduce 

reconstruction difficulties. However, the model still 

maintained perceptual consistency across all 

datasets, reinforcing its adaptability for real-world 

inpainting tasks. 

3.2.3. Ablation Study Interpretation 

To understand the impact of individual model 

components, an ablation study was conducted. 

Removing Adaptive Mask Optimization resulted in 

a significant drop in PSNR (from 34.72 dB to 33.5 

dB) and SSIM (from 0.942 to 0.931), showing that 

mask refinement plays a crucial role in texture 

accuracy. Similarly, excluding Swarm-Based 

Optimization reduced performance (PSNR: 33.7 

dB, SSIM: 0.934), proving that dynamic 
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hyperparameter tuning improves feature 

reconstruction and learning balance. The largest 

quality degradation was observed when the 

Enhanced Loss Function was removed, leading to a 

lower SSIM (0.926) and a higher EPI (0.098). This 

suggests that regularizing perceptual and pixel-wise 

reconstruction loss is essential for sharper, more 

consistent outputs. These findings confirm that each 

component contributes uniquely, and removing any 

of them negatively impacts inpainting quality. The 

full model configuration ensures optimized 

structural consistency and realistic restorations. 

3.2.4. Computational Performance & 

Real-World Feasibility 

While inpainting accuracy is essential, 

computational efficiency is equally important for 

real-time applications. The full model achieved an 

inference time of 0.75 sec per image, with a memory 

requirement of 280 MB. Although slightly higher 

than baseline models, this trade-off is justified by 

the improved reconstruction quality. Removing 

Adaptive Mask Optimization slightly improved 

speed (0.65 sec/image) but reduced PSNR and 

SSIM. The most efficient configuration was 

observed when the Enhanced Loss Function was 

removed (0.55 sec/image, 230 MB memory usage), 

but this led to higher perceptual inconsistencies. 

These results highlight that Swarm-Based 

Optimization introduces a small computational 

overhead but significantly enhances image quality. 

For real-world deployment, optimization techniques 

such as model pruning or quantization could further 

improve processing efficiency without 

compromising accuracy. 

Conclusion  

The Adaptive Mask Optimization-Driven Hybrid 

GAN establishes a new benchmark for high-fidelity 

image inpainting, ensuring enhanced structural 

integrity and realistic texture restoration. By 

combining mask refinement, hyperparameter 

tuning, and loss function optimization, the model 

achieves state-of-the-art performance while 

maintaining computational efficiency. Future 

research can explore lightweight transformer-based 

enhancements, multi-stage inpainting techniques, 

and real-time deployment strategies to further 

improve image restoration quality. 
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