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1. Introduction 

Urban traffic congestion remains one of the most 

 

critical challenges in modern cities, resulting in  
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Urban traffic congestion poses persistent challenges, aggravated by 

insufficient integration of adaptive control and emergency vehicle 

prioritization. Existing AI models largely focus on either traffic flow 

optimization or emergency response, rarely combining both. This research 

fills this gap by developing a unified framework that predicts optimal green 

light durations using real-time traffic density, vehicle heterogeneity, and 

emergency prioritization. A four-way intersection traffic simulation was 

developed using the pygame library to closely mimic real traffic dynamics, 

lane configurations, vehicle types, and turning movements. Five case studies 

were conducted: (1) a mathematical green-time prediction model 

incorporating weighted vehicle classes, clearance times, arrival rates, and 

queue spillover controls; (2) reinforcement learning (RL) trained on varied 

traffic conditions; (3) RL enhanced with emergency vehicle priority; (4) 

application of the Neuroevolutionary of Augmenting Topologies (NEAT) 

algorithm for model architecture optimization; and (5) comparative analysis 

of model performance. The mathematical model reduced mean vehicle delay 

by 23% (p < 0.05), standard RL achieved 31% improvement (p < 0.01), 

emergency-aware RL maintained a 28% reduction while ensuring emergency 

vehicle clearance within 18.7 seconds on average, and the NEAT-based 

system improved throughput by 34% with superior adaptability to traffic 

fluctuations. The integrated framework significantly enhances traffic 

efficiency compared to fixed-time signals while guaranteeing rapid 

emergency vehicle response. Its extensibility supports integration into smart 

city traffic management platforms, offering scalable and adaptive solutions 

for urban mobility challenges. 
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prolonged travel times, increased fuel consumption, 

higher greenhouse gas emissions, and reduced road 

safety. Fixed-time traffic signal control, still widely 

used in many urban networks, fails to respond to 

dynamic traffic variations and often leads to 

inefficient green time allocation. While adaptive 

control systems have been developed, most focus 

either on optimizing regular traffic flow or on 

facilitating emergency vehicle passage, rarely 

integrating both within a unified operational 

framework (Birari et al., 2023; Rajan, 2023). To 

address this gap, this study proposes an integrated 

adaptive traffic signal control framework that not 

only optimizes traffic flow for heterogeneous 

vehicles but also prioritizes emergency vehicles 

without compromising the overall network 

performance. The foundation of this work is a 

conceptual framework for predicting optimal green 

light durations based on both mathematical 

modelling and AI-driven optimization. The 

mathematical model predicts the next green phase 

duration (G_next) using real-time and predictive 

inputs such as vehicle counts per type, arrival rates, 

queue lengths, lane configurations, and turning 

proportions. The formula dynamically adjusts signal 

timings between a predefined G_min and G_max to 

ensure operational safety while optimizing flow. 

Additional control terms address queue spillover 

risk (Q_spill) and fairness (D_fair) to avoid starving 

other approaches [1]. Mathematical Expression for 

Green Time Prediction: 

G_next = max [ G_min, min (G_max, (Σ (i=1 to 

N_types) [ W_i * (v_i_queue + λ_i * t_p) * 

t_clear_i] / (N_lanes_eff * F_turn * F_spatial) + α * 

Q_spill + β * D_fair))] 

Where: 

• G_min, G_max = Minimum and maximum 

allowable green time (seconds) 

• v_i_queue = Number of vehicles of type i 

currently in the queue 

• λ_i = Arrival rate of vehicles of type i 

(vehicles/sec) 

• t_p = Prediction window (seconds) 

• W_i = Weight assigned to vehicle type i 

(based on passenger car equivalent) 

• t_clear_i = Time for one vehicle of type i to 

clear the intersection (seconds) 

• N_lanes_eff = Effective number of lanes 

• F_turn = Adjustment factor for turning 

movements 

• F_spatial = Spatial adjustment factor for 

available queue storage 

• Q_spill = Queue spillover adjustment term 

• D_fair = Fairness/delay adjustment term 

• α, β = Tuning parameters for spillover and 

fairness influence 

In parallel, the AI-based approach uses the same 

variables as input features for reinforcement 

learning (RL) and NEAT-evolved RL models. This 

enables adaptive decision-making based on 

historical trends, real-time patterns, and predictive 

traffic behaviour. 

1.1. Research Objectives: 

• Optimize green time allocation in real-time 

for multiple vehicle classes. 

• Ensure emergency vehicle prioritization 

with minimal disruption to regular traffic. 

• Leverage NEAT to evolve RL architectures 

for greater adaptability. 

• Demonstrate a multi-case comparative 

framework to validate performance [2]. 

2. Method  

2.1. Case Study Framework: 

2.1.1. Case Study 1: Mathematical 

Green-Time Prediction Model 

• Approach: Applied the proposed formula to 

compute G_next based on weighted vehicle 

counts, arrival rates, and clearance times. 

• Key Features: Incorporated spillover 

control (Q_spill) to prevent queue blockages 

and fairness term (D_fair) to prevent 

excessive waiting for other approaches. 

• Outcome: Reduced mean vehicle delay by 

23% compared to fixed-time control [3]. 
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2.1.2. Case Study 2: Reinforcement 

Learning (RL) Optimization 

• Approach: Used an RL agent trained in the 

simulated environment to adjust green 

durations in discrete steps based on real-time 

traffic states. 

• State Space: Lane-wise vehicle count, 

queue length, phase timing, and emergency 

presence. 

• Reward Function: R_t = -ω1 * (Total 

Delay) - ω2 * (Queue Spillover) + ω3 * 

(Emergency Clearance Success) 

• Outcome: Achieved a 31% improvement in 

average vehicle delay [4]. 

2.1.3. Case Study 3: Emergency-Aware 

RL 

• Approach: Extended the RL model with 

explicit emergency detection logic. Upon 

emergency vehicle detection, the controller 

dynamically altered phase sequences to 

prioritize clearance while recalculating 

timings to minimize disruption. 

• Outcome: Maintained a 28% delay 

reduction while clearing emergency 

vehicles within 18.7 seconds on average [5]. 

2.1.4. Case Study 4: NEAT-Evolved RL 

Architecture 

• Approach: Applied the Neuroevolutionary 

of Augmenting Topologies (NEAT) 

algorithm to evolve the RL neural network’s 

architecture for better adaptability to traffic 

pattern changes. 

• Key Features: Evolved topologies over 100 

generations, optimizing node connectivity, 

activation functions, and layer structures. 

• Outcome: Improved throughput by 34% 

and provided robust adaptability to 

fluctuating conditions [6]. 

2.1.5. Case Study 5: Comparative 

Performance Analysis 

• Approach: Conducted a comparative 

evaluation of the four models under identical 

traffic scenarios, including peak hours, off-

peak periods, and mixed emergency 

conditions. 

• Metrics: Mean vehicle delay, throughput, 

emergency clearance time, and queue 

spillover frequency. 

• Outcome: NEAT-based RL consistently 

outperformed other approaches, but the 

mathematical model offered a lower-

complexity alternative with significant gains 

[7]. 

This integrated case study design ensures that the 

problem of inefficient urban intersection 

management is addressed comprehensively, with 

each approach contributing unique strengths toward 

building a scalable, smart-city-ready solution. The 

methodology for the proposed Adaptive Traffic 

Signal Control System consists of simulation 

modelling, mathematical formula design, AI-based 

optimization, and comparative case study 

evaluation. The experiments were structured to 

ensure that each configuration could be replicated 

by a qualified researcher using the same parameters 

and conditions. 

2.2. Simulation Environment 

A four-way intersection was modelled using the 

pygame simulation library to emulate realistic urban 

traffic conditions. The simulation included: 

• Dedicated lanes for straight, left-

turn, and right-turn movements. 

• Heterogeneous vehicle classes: two-

wheelers, cars, buses, and trucks. 

• Variable arrival rates to replicate 

peak and off-peak patterns. 

• Lane-based queue detection for real-

time state updates [8]. 

Each lane was equipped with a virtual loop detector 

that captured: 

• Vehicle counts by type. 

• Queue lengths. 

• Arrival rates. 

• Turning proportions. 

• Emergency vehicle detection events. 

2.3. Mathematical Green-Time Prediction 

Model 

• The core prediction model used the 

following expression: 

• G_next = max [ G_min, min 

(G_max, (Σ (i=1 to N_types) [ W_i * 

(v_i_queue + λ_i * t_p) * t_clear_i] / 

(N_lanes_eff * F_turn * F_spatial + 

α * Q_spill + β * D_fair))] 

The formula operates in three stages 

• Demand estimation – weighted sum of 

queued and predicted arrivals. 

• Capacity adjustment – scaling by lane 

availability, turning factor, and spatial limits 

Shown in Table 1. 
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• Operational constraints – clipping results 

between G_min and G_max, with 

corrections for spillback and fairness [9]. 

 

 

Table 1 Variables and Parameters for Green-Time Prediction 

Variable Definition Role in Prediction 

G_min, 
G_max 

Minimum and maximum 
allowable green time 

Enforces operational safety 
limits 

v_i_queue Current queued vehicles of type i 
Higher counts increase green 

time 

λ_i Arrival rate for vehicle type i 
Prevents queue growth during 

green 

t_p Prediction window (seconds) 
Anticipates arrivals during 

green 

W_i Weight for vehicle type i 
Reflects passenger car 

equivalent impact 

t_clear_i Clearance time per vehicle type 
Adjusts for slower vehicle 

types 

N_lanes_eff Effective lanes for movement More lanes increase capacity 

F_turn Turning adjustment factor 
Accounts for slower turning 

vehicles 

F_spatial Spatial factor for queue storage 
Reduces green if storage is 

nearly full 

Q_spill Queue spillover term 
Extends green to prevent 

spillback 

D_fair Fairness/delay term 
Avoids starving other 

approaches 

α, β Tuning parameters 
Adjust influence of 
spillover/fairness 

2.4. AI-Based Optimization 

In the AI-driven configurations, the same inputs as 

above were used as features for a Reinforcement 

Learning (RL) agent [10-13]. 

State Space 

• Lane-wise vehicle counts per type. 

• Queue lengths. 

• Phase timings and remaining time. 

• Emergency detection flag. 

• Historical delay data. 

• Action Space 

• Adjust green time in increments of ±5 

seconds. 

• Reward Function 

• Ini 

• Copyedit 

• R_t = -ω1 * (Total Delay) ω2 * (Queue 

Spillover) + ω3 * (Emergency Clearance 

Success) 

• NEAT Optimization 

• The Neuroevolutionary of Augmenting 

Topologies (NEAT) algorithm was used to 

evolve the RL agent’s neural network 

architecture. This allowed for dynamic 

adjustment of node structure and activation 

functions to maximize learning performance 

[14-17]. 

2.5. Case Study Design 

All simulations ran for 10,000 cycles per scenario, 

with peak and off-peak conditions tested separately 

Shown in Table 2 Case Study Design.
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Table 2 Case Study Design 

Case 
Study 

Description Key Feature Performance Metric 

1 
Mathematical 
model only 

Uses predictive 
formula 

Delay reduction 

2 RL optimization Learns timings via trial Delay & throughput 

3 
Emergency-aware 

RL 
Adds emergency 

priority 
Clearance time 

4 NEAT-evolved RL 
Evolves RL 
architecture 

Adaptability 

5 
Comparative 

analysis 
Tests all under same 

traffic 
Multi-metric evaluation 

3. Result 

The proposed Integrated Adaptive Traffic Signal 

Control System was evaluated using a four-way 

pygame-based simulation under peak-hour, off-

peak, and mixed emergency conditions. 

Performance was measured across mean vehicle 

delay, throughput, queue spillover frequency, and 

emergency vehicle clearance time. Each case study 

was run for 10,000 simulation cycles, with identical 

traffic scenarios for direct comparability [18]. 

3.1. Case Study 1: Mathematical Green-Time 

Prediction Model 

The mathematical model reduced mean vehicle 

delay by 23% compared to fixed-time control. 

Queue spillover frequency decreased by 18%, 

indicating effective use of the spillover term Qspill. 

Fairness term Dfair prevented starvation of low-

volume approaches, with a maximum observed 

delay of 58 seconds across all directions. 

3.2. Case Study 2: Reinforcement Learning 

(RL) Optimization 

The RL-based controller achieved a 31% 

improvement in mean delay and increased 

throughput by 14% relative to fixed-time control. 

The model dynamically extended or reduced green 

times in response to lane-specific congestion, 

leading to more balanced intersection performance. 

Queue spillover was reduced by 26% [19]. 

3.3. Case Study 3: Emergency-Aware RL 

By integrating emergency detection logic, the 

system successfully cleared emergency vehicles 

within 18.7 seconds on average, while still 

maintaining a 28% reduction in mean vehicle delay. 

This demonstrates that prioritizing emergency 

vehicles can be achieved without significantly 

degrading general traffic performance. 

 

3.4. Case Study 4: NEAT-Evolved RL 

NEAT-based RL provided the highest adaptability, 

with a 34% improvement in delay reduction and a 

21% increase in throughput. The evolved neural 

network architectures demonstrated robust 

performance in fluctuating conditions, including 

sudden surges in vehicle arrivals. Spillover 

incidents were reduced by 32%, and emergency 

clearance time averaged 17.4 seconds Shown in 

Figure 1. 

 

 
Figure 1 Simulation 

 

3.5. Observations 

NEAT-based RL consistently outperformed other 

models in adaptability and congestion reduction.  

Mathematical model remained competitive for low-

complexity deployments, offering substantial gains 

without high computational cost. Emergency-aware 

RL proved that safety-critical priorities can be 

integrated without major performance losses Shown 

in Figure 2. The inclusion of spillover and fairness 
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terms significantly improved network stability and 

reduced queue blockages [20]. 

Table 3 presents a summary of the performance 

metrics for all case studies: 

 

Table 3 Comparative Performance of Case Studies 

Case Study 
Mean Delay 
Reduction 

(%) 

Throughput 
Increase 

(%) 

Avg. 
Emergency 
Clearance 

(sec) 

Spillover 
Reduction 

(%) 

Mathematical 
Model 

23 9 N/A 18 

RL 
Optimization 

31 14 N/A 26 

Emergency-
Aware RL 

28 12 18.7 22 

NEAT-
Evolved RL 

34 21 17.4 32 

   

 
Figure 2 Analysis 

 

Conclusion 

This study proposed and evaluated an integrated 

adaptive traffic signal control framework that 

combines mathematical modelling, reinforcement 

learning (RL), emergency-aware RL, and 

Neuroevolutionary of Augmenting Topologies 

(NEAT) for optimizing green light durations in 

urban intersections. The developed system 

effectively addressed the dual challenge of 

maintaining high traffic throughput while ensuring 

rapid clearance for emergency vehicles. The 

experimental results confirmed that the 

mathematical model significantly reduced mean 

vehicle delay compared to fixed-time control, RL 

further enhanced optimization through adaptive 

learning, and NEAT-based RL achieved the highest 

adaptability to fluctuating traffic conditions. The 

emergency-aware RL model demonstrated that 

emergency prioritization can be implemented 

without severe disruptions to overall network 

efficiency. Importantly, the multi-case evaluation 

established that while NEAT-based RL offers 

superior adaptability, the mathematical model 

remains a low-complexity alternative suitable for 

intersections with limited computational resources. 

The results validate the conceptual framework’s 

core principle — that green time optimization 

should balance vehicle heterogeneity, arrival rates, 

intersection geometry, and fairness considerations. 

While the findings are promising, certain limitations 

were identified, including reliance on accurate real-

time data, computational demands of NEAT, and 

the single-intersection scope of this study. These 

limitations provide clear pathways for future work, 

including multi-intersection network coordination, 

hardware-in-the-loop testing, and integration with 

IoT-enabled traffic management platforms. Overall, 

the proposed framework contributes a scalable, 

data-driven, and adaptive solution to intelligent 

transportation systems, with strong potential for 

deployment in smart city traffic management 

infrastructures. 
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