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1. Introduction

Increasing the need for renewable and sustainable 

energy has led to more solar photovoltaic (PV) 

systems being installed in homes, industries, and 

businesses. Solar power is clean and plentiful, 

making it a key part of moving away from fossil 

fuels toward cleaner energy sources. However, as 

these systems become part of smart infrastructure 

with inverters, batteries, and monitoring tools, they 

are also at risk from cyber and physical attacks. The 

use of IoT sensors, real-time data analysis, and 

remote connections has created many possible 

points of attack. Solar energy systems are now 
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The rapid expansion of renewable energy deployment has placed solar 

photovoltaic (PV) at the forefront of the clean power supply for the 

residential, commercial and industrial users. With their insertion into smart 

Grids, though these systems are facing increasing exposure to cyber physical 

threats to stability simulation and protection system that embedded with solar 

panels, inverters and battery management units along with smart sensing 

using LDR, PIR, IR, temperature sensors, and actuator responses through 

LED and buzzer notifications. A multi-layered cybersecurity framework is 

designed, including AI-powered anomaly detection for timely threat 

detection, blockchain-enabled decentralized logging to provide tamper-proof 

audit records, honeypot-derived decoy devices to divert attackers, and a 

Moving Target Defence (MTD) function for adaptive system reconfiguration 

against dynamic threats. The system is implemented on Raspberry Pi and 

ESP32 boards to facilitate real-time data acquisition, secure processing, and 

visualization of solar performance data, environmental parameters, and 

intrusion attempts. Experimental validation confirms the system's accurate 

estimation of solar irradiance, effective inverter–battery interaction, and 

strong intrusion resilience based on coordinated responses. Furthermore, the 

decoy-based deception method proposed in this work effectively misdirects 

adversaries from important resources while ensuring operational continuity. 

The findings identify a new paradigm for incorporating sustainable energy 

management with sophisticated cybersecurity measures and provide a 

resilient, scalable, and smart model for future decentralized smart grid 

infrastructures. 
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vulnerable to intrusions, tampering, and attacks that 

stop them from working properly. Recent attacks on 

smart grids and renewable energy facilities show the 

urgent need to combine energy management with 

strong cybersecurity. Traditional ways of protecting 

energy systems, such as firewalls and user 

authentication, are still important but no longer 

enough to stop clever attackers. With more reliance 

on edge devices like Raspberry Pi and ESP32 for 

controlling and collecting data, attacks can target 

sensors, actuators, and control signals. These 

attacks could stop solar energy production, mess 

with inverter functions, or drain battery power. 

These weaknesses highlight the need to build 

cybersecurity into the design of solar systems from 

the start. In this paper, we present an integrated solar 

energy system that includes solar energy simulation, 

AI-based anomaly detection, blockchain-backed 

logging, and deception-based defence. Using LDR 

modules to sense sunlight, PIR and IR sensors to 

detect intruders and movement, and DHT sensors to 

measure temperature, the system has a 

comprehensive understanding of the environment. 

This data is combined with devices like LEDs and 

buzzers to alert users when something is wrong. The 

system also uses LDR readings to estimate power 

generation, which helps create realistic simulations 

of normal and attack scenarios in controlled tests. 

One key part of this system is the use of decoy 

devices, or honeypots, within the solar setup. These 

fake devices trick attackers into targeting copies 

instead of real equipment, slowing down attacks and 

helping security systems track harmful activities in 

real time. Along with this, the Moving Target 

Defence (MTD) approach changes system settings 

and access controls regularly, making it harder for 

attackers to exploit fixed weaknesses. Together, 

these features improve resilience and help manage 

threats before they cause serious damage. 

Blockchain plays a key role in building trust and 

accountability within this system. By storing sensor 

data, intrusion attempts, and system responses in an 

unchangeable, shared ledger, the system provides 

secure logs for investigations and compliance 

checks. This decentralized setup avoids the risks of 

centralized logging systems, which can be tampered 

with. The blockchain layer also helps track solar 

performance and how the system responds to 

intrusions, adding transparency and reliability. The 

main contribution of this work is the design and 

development of a realistic prototype that combines 

renewable energy generation, IoT-based sensing, 

AI-driven anomaly detection, blockchain-secured 

logging, and strengthened defence through 

deception. Compared with traditional methods, this 

research brings together physical energy simulation 

and cyber resilience in one test setup. The system 

can not only mimic solar power generation but also 

show how modern security methods can be used in 

real life to protect smart energy systems. This study 

lays a strong foundation for secure, smart, and 

adaptable solar cybersecurity systems that can 

support future decentralized grids and large-scale 

renewable energy projects [1]. 

2. Literature Review  

Introduction: 

The fast-growing use of solar energy as a clean 

power source has come with increased risks of 

cyberattacks on important parts of the system. 

Experts around the world have talked about many 

ways to protect solar systems, including 

photovoltaic panels, inverters, storage devices, and 

IoT sensors. Studies show that relying only on usual 

computer security methods isn't enough because 

new dangers come from the mix of physical and 

digital systems. Current research looks at tools like 

artificial intelligence, blockchain, honeypots, digital 

twins, and edge computing as possible ways to deal 

with these security issues. This part of the text 

reviews the existing research, pointing out what 

works well, what's missing, and the common trends 

in improving the safety and reliability of solar 

energy systems. 

2.1. Cybersecurity Challenges in Solar 

Energy Systems 

Solar systems like panels, inverters, and storage 

units are quickly connecting to IoT networks, which 

makes them easier targets for new kinds of 

cyberattacks. Studies show that threats such as false 

data injection, service disruption, and changing 

inverter settings can harm the reliability of energy 

supply. These attacks not only damage data 

accuracy but also cause big financial losses. Many 

studies say that attackers exploit weak login systems 

and lack of encryption in solar IoT setups. Also, 

solar farms linked to smart grids are very risky 

because a problem in one part can spread across the 

entire grid. This shows that we need stronger 

cybersecurity measures right away. Artificial 

Intelligence for Threat Detection [2]. 
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2.2. Artificial Intelligence of Threat 

Detection 

This technology has been used widely for anomaly 

detection within energy systems, this technology is 

widely used to spot unusual behaviour in energy 

systems, using both supervised and unsupervised 

learning methods. Studies show that AI can detect 

harmful actions as they happen by analysing large 

amounts of data from solar farms. These studies also 

show that deep learning methods like LSTMs are 

effective for predicting trends over time and help 

find irregularities in energy production. Scientists 

use AI models to reduce false alarms compared to 

older methods that rely on known attack patterns. 

Also, AI improves adaptability, allowing it to detect 

new types of attacks that traditional firewalls can't 

handle. Using AI in solar power monitoring ensures 

fast and smart responses to any issues. 

2.3. Machine Learning Algorithms in 

Energy Security 

Many different methods have been studied to use 

machine learning (ML) models for protecting smart 

energy systems. Algorithms like Support Vector 

Machines (SVM), Random Forest, and Gradient 

Boosting have been shown to work well in 

identifying cyber threats in systems that use sensors. 

Studies show that ML helps find false readings in 

data from solar panels, especially in LDR and DHT 

sensors. Researchers also highlight that improving 

accuracy comes from feature engineering, where 

factors like sunlight levels, current, and movement 

data are used to train the models. One big issue that 

has been discussed is the lack of labelled data sets 

that are specific to solar cyber systems. Because of 

this, there is research into hybrid ML models that 

combine both supervised and unsupervised 

techniques. 

2.4. Blockchain for Secure Data Logging 

Blockchain technology is becoming a big solution 

to make sure data is safe and true in renewable 

energy. Studies show that blockchain can store 

sensor data in a way that can't be changed, which 

helps track and hold people responsible for energy 

use. Experiments show that because blockchain data 

can't be altered, it stops people from changing 

information about how much energy is made or 

used. Blockchain allows secure, trustworthy energy 

trades between people in solar networks without 

needing a middleman. Research says that the open 

nature of blockchain builds trust among those 

involved. However, some studies also point out that 

blockchain can be slow when handling many 

transactions, and researchers are now looking into 

lighter ways to make blockchain work better with 

solar devices that have limited resources [3]. 

2.5. Smart Contracts in Energy 

Transactions 

Smart contracts help automate and build trust in 

decentralized energy exchanges. Studies show they 

work well in peer-to-peer solar trading platforms, 

where producers and consumers can make deals that 

happen automatically without needing anyone to 

step in. Research shows that smart contracts make 

billing and pricing clear and fair, which helps 

prevent fraud. Different pilot projects show how 

smart contracts can improve microgrid balancing by 

making transactions settle quickly and efficiently. 

They also help with demand-response programs, 

allowing extra solar power to be bought and sold 

more effectively. However, there are challenges 

when using smart contracts with large power grids, 

but new adaptive systems are being developed to 

handle these issues. 

2.6. Moving Target Defence (MTD) in 

Critical Systems 

MTD has become a promising way to protect 

important facilities like solar farms. Studies 

describe MTD as a method where system settings 

such as IP addresses, ports, and encryption keys are 

changed often to confuse attackers. Research shows 

that making these changes frequently makes it 

harder for attackers to gather information and 

reduces the chances of successful attacks. When 

MTD is combined with AI, it can predict threats and 

change the system's attack surface in response. 

Experts also note that MTD helps defend against 

advanced persistent threats. Although MTD uses a 

lot of resources, improved versions are now being 

used more in energy systems that rely on the internet 

of things. 

2.7. Decoy Devices and Honeypots 

The idea of using fake devices to trick attackers has 

become more common in protecting renewable 

energy systems. These fake devices, called 

honeypots, look like real solar equipment and attract 

hackers. This lets security teams’ study how 

attackers try to break in. Studies show that 

honeypots help slow down hackers and keep real 

tools like inverters and batteries safe. Some tests 

found that using honeypots with AI helps detect 

threats from inside the system better. Experts also 

say honeypots give great information for 
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investigations, which can improve how well 

machine learning tools identify different types of 

attacks. Fake devices are especially useful in small 

solar setups where resources are limited, but early 

warnings are still very important. 

2.8. Integration of Digital Twin Models 

Digital twins are computer models that closely copy 

real-world systems, allowing for real-time tracking 

and predictions. Research shows that using digital 

twins for solar systems helps find problems by 

comparing what should happen with what is 

happening. In situations where a system is under 

attack, digital twins show issues like sudden drops 

in power output or strange sensor readings. Studies 

say digital twins help reduce system stoppages by 

allowing early fixes and stopping threats at the same 

time. They are also being used with blockchain to 

create records that show if data has been changed. 

This combination makes systems more able to 

handle and recover from cyberattacks [4]. 

2.9. Edge-Cloud Security Architectures 

Various studies show that combining edge 

computing with cloud systems can help safely 

monitor solar energy. Using edge devices such as 

Raspberry Pi and ESP32 to process sensor data 

locally can help detect cyber threats faster by 

reducing delays. Research has found that making 

decisions in real-time at the edge allows quick 

actions like triggering alarms or activating decoys. 

However, connecting to the cloud allows for 

analysing large amounts of data over time using AI. 

Experts highlight that this two-layer security setup 

strikes a good balance between speed and the ability 

to handle big data. Also, using blockchain at the 

edge level improves trust because data stored 

locally can be checked thoroughly across the 

network. This approach is becoming a reliable 

method for security.10. Complete Security 

Frameworks. 

2.10. Complete Security Frameworks 

Literature recently concludes that one technique is 

insufficient to secure solar infrastructures 

completely; rather, integration of a mix of several 

techniques is required. Integrated solutions that 

harmonize AI for anomaly detection, blockchain for 

tamper-proof logging, MTD for attack surface 

movement, and honeypots for deception provide 

protection layers. Research emphasizes that this 

synergy greatly minimizes vulnerabilities. 

Standardization and interoperability are also crucial 

for deploying such frameworks in global solar 

systems, according to researchers. Pilot tests 

indicate good promise in enhancing resilience 

without compromising efficiency of operation. 

Thus, holistic approaches are surfacing as the basis 

for next-generation solar energy cybersecurity. 

3. System Architecture 

The suggested Solar Energy Simulation with 

Respects to Cybersecurity using Decoy Devices is 

aimed at offering an effective and smart defence 

mechanism for renewable energy systems. In 

contrast to conventional solar monitoring systems, 

the architecture supports IoT sensors, AI-based 

anomaly detection, blockchain-based integrity 

verification, and Moving Target Defence (MTD) 

measures alongside physical solar hardware 

elements like PV panels, charge controllers, 

batteries, and inverters Shown in Figure 1.  

 

 
Figure 1 Architecture Diagram 
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The design not only ensures optimal energy 

generation and storage, but also optimally 

counteracts cyber-physical security vulnerabilities   

like false data injection, spoofing, and denial-of-

service. The architecture is a hybrid edge–cloud 

model in which the Raspberry Pi is the edge 

processing node that performs sensor preprocessing, 

anomaly detection, and decoy engagement and the 

cloud and blockchain infrastructure that offers long-

term storage, data standardization, and immutable 

security logging. 

The end-to-end system comprises: 

• PV Panel and Energy Hardware Integration 

• Edge Preprocessing with Raspberry Pi 

• Cloud-Based Data Processing 

• AI-Driven Cybersecurity Models 

• Analytics and Threat Detection 

• Threat Classification and Alert Control 

• Real-Time Dashboard and Visualization 

Each module is linked, creating a closed-loop 

feedback cycle wherein data from sensors is 

gathered, authenticated, processed, and safeguarded 

in real time to ensure both energy reliability and 

cybersecurity resiliency [5]. 

3.1. PV Panel and Edge Preprocessing 

3.1.1. PV Panel and Power Electronics 

The energy system starts with a solar PV panel that 

produces DC power from falling light. The energy 

goes through a charge controller that avoids 

overcharging, flows to a bank of batteries for 

storage, and gets converted through an inverter to 

power AC/DC loads. The use of IoT-based 

monitoring allows the parameters of energy like 

voltage, current, temperature, and irradiance to be 

always monitored. 

3.1.2. Edge Preprocessing using 

Raspberry Pi 

Raspberry Pi serves as the edge central intelligence, 

plugged directly into several sensors such as 

DHT11 (temperature and humidity), LDR with 

MCP3008 (irradiance measurement), INA219 

(voltage/current monitoring), and PIR/IR sensors 

(motion detection). Edge preprocessing makes sure 

that important anomalies like sudden irradiance 

drops or unusual current spikes are captured locally 

without cloud latency. 

3.1.3. Noise Filtering and Data 

Validation 

Physical environmental conditions like dust deposit, 

shading, or sensor lag inject variations into the raw 

data. These are minimized by filtering algorithms 

eliminating high-frequency noise and submitting 

smoothed results for analysis. This process 

eliminates false positives in anomaly detection and 

enhances overall signal-to-noise ratio. 

3.1.4. Segmentation and Compression 

Data is split into brief time-window intervals (e.g., 

every 5–10 seconds) and compressed before being 

transferred to the cloud. This prevents unnecessary 

bandwidth consumption but keeps meaningful 

patterns intact for real-time analysis Shown in 

Figure 2 Use Case Diagram. 

 

 

 
Figure 2 Use Case Diagram 

 

3.2. Cloud-Based Data Processing 

The data, having been Pre-processed at the edge, is 

sent to the cloud layer, which is a compute-intensive  

 

 

back end for advanced analytics, blockchain 

verification, and report generation. 
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3.2.1. Data Standardization 

Raw sensor data differs between modules, for 

example, temperature in Celsius, irradiance in Lux, 

current in Amps. Standardization converts all these 

units into a consistent dataset, so it is compatible 

with AI models and blockchain records [6]. 

3.2.2. Filtering and Prioritization 

Cloud-based filtering mechanisms eliminate 

duplicate values and give priority to high-risk data 

like immediate disconnections of sensors, unusual 

current spikes, or unauthorized access attempts. 

This way, attack-concerned telemetry gets priority 

attention. 

3.2.3. Model Execution 

The cloud hosts several AI models for predictive 

analysis, anomaly detection, and attack recognition. 

In contrast to edge devices, the cloud can execute 

computationally demanding deep learning models 

like LSTM Autoencoders, Random Forest 

classifiers, and blockchain consensus validators. 

This division of effort guarantees high scalability at 

minimal latency. 

3.2.4. Blockchain Integration 

Each log records a benign sensor reading or an 

identified attack is recorded in a tamper-evident 

blockchain ledger. The unalterable history adds to 

system trust and serves as forensic audit evidence. 

3.3. AI-Powered Cybersecurity Models 

The AI processor delivers the artificial intelligence 

necessary to separate benign solar output variability 

from nefarious cyberattacks. 

3.3.1. Sensor Anomaly Detection 

With the help of machine learning classifiers, 

normal operational ranges are established for 

temperature, irradiance, and current flow. Unusual 

deviations beyond these ranges are treated as 

anomalies, and real-time alerts are sent. 

3.3.2. Decoy Device Interaction Model 

Decoy endpoints (honeypots) are part of the system 

that mimic vulnerable nodes like inverters or sensor 

controllers. When the attackers try to take advantage 

of these nodes, their activity is redirected to the 

decoy, logged, and processed without interfering 

with the actual infrastructure [7]. 

3.3.3. Moving Target Defence (MTD) 

MTD incorporates unpredictability by constantly 

altering IP addresses, sensor-to-server correlations, 

and port numbers, rendering it incredibly hard for 

attackers to acquire a stable presence. MTD as a 

proactive defence enhances system survivability 

against prolonged threats. 

3.3.4. Blockchain Validation Model 

Blockchain provides integrity and non-repudiation 

of energy information. Even if attackers manipulate 

live data streams, blockchain-archived records are 

unalterable, and a single source of truth for grid 

operations is maintained. 

3.3.5. Predictive Forecasting and Risk 

Estimation 

AI models further predict the availability of solar 

power by connecting irradiance, temperature, and 

historic weather patterns. Such a prediction enables 

operators to know not only future energy production 

but also likely risk exposure to attacks during peak 

or low production times. 

4. Analytics and Threat Detection 

The analytics layer aggregates outputs from AI, 

decoy, and blockchain into a single decision-

making engine. 

4.1. Attack Hotspot Detection 

Recurring intrusion attempts get mapped to 

individual system modules (e.g., inverter controller 

or sensor gateway), which reveal key hotspots that 

need more robust defence policies. 

4.2. Blockchain-based report generation 

Reports consist of time-stamped attack telemetry, 

summary of anomalies, and energy efficiency 

information. These reports are stored on blockchain, 

thus remain immutable, and are accessible only to 

authorized administrators [8]. 

4.3. Visualization and Correlation 

The analytics module cross-references energy 

generation graphs and cybersecurity notifications. 

For instance, an abrupt battery charge decrease 

coinciding with anomalous decoy motion could 

suggest a false data injection attack. 

5. Threat Classification Module 

Threats are classified into three alert levels to 

minimize response times: 

• High Alert: Explicit intrusion on critical 

modules (e.g., inverter manipulation, false 

data injection). 

• Medium Alert: Repeated anomalies 

without explicit tampering, which need 

human confirmation. 

• Low Alert: Small variations or non-vital 

deviations. This categorization makes 

system operators focus first on severe 
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attacks while keeping track of less-than-

severe problems. 

6. Alert Control and Communication 

6.1. Edge Alerts 

LED lights flash and buzzers beep upon detecting 

serious anomalies or attacks. 

6.2. Dashboard Notifications 

Flask-based dashboards show live security notices 

and sensor trends to operators. 

6.3. Blockchain Logging 

Alerts are logged on blockchain at the same time, so 

attackers cannot remove their digital trail. 

6.4. Remote Communication 

Integration with SMS, Telegram, or Email 

notifications ensures operators are updated in real-

time even when they are not physically present. 

7. Dashboard and Visualization Interface 

The dashboard is the user interface for real-time 

monitoring and control. 

7.1. Real-Time Sensor Display 

Temperature, irradiance, current, and voltage 

readings are updated in real time. 

 

 

7.2. Security Visualization 

Anomaly detections, decoy activations, and threat 

classifications are shown with color-coded 

indicators. 

7.3. Blockchain Verification Panel 

Operators can check each transaction log against the 

blockchain to establish authenticity. 

7.4. Graphical Insights 

Interactive charts and graphs display both energy 

performance and attack trends, offering a dual 

perspective of power and security metrics. 

8. Methodology 

The designed system Solar Energy Simulation with 

Respect to Cybersecurity using Decoy Devices 

combines renewable energy monitoring, AI-based 

anomaly detection, blockchain logging, and Moving 

Target Defence (MTD) Shown in Figure 3 

Methodology Features [9]. 

 

 

 
Figure 3 Methodology Features 

 

The approach provides stable energy transmission 

from solar panels with multi-layered cybersecurity 

against cyber–physical attacks. The modules are 

explained below: 

8.1. Data Collection and Pre-Processing 

8.1.1. Solar Panel Data Acquisition 

The photovoltaic panel produces voltage and 

current values that are constantly tracked through 

the INA219 sensor. These values are vital in 

mimicking solar irradiance fluctuations brought 

about by natural factors like cloud movement. 

Through the collection of precise measurements, the 

system offers a sound basis for both energy 

production as well as intrusion detection analysis. 

8.1.2. Environmental Sensor Data 

Several sensors such as DHT11 (humidity and 

temperature), LDR (irradiance), and PIR (motion) 

are linked to Raspberry Pi. Each of the sensors 
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offers a unique layer of surveillance—DHT11 

observes thermal fluctuations, LDR observes 

irradiance changes, and PIR reports unauthorized 

motion around the solar setup. Combined, they form 

a holistic dataset for detection of anomalies. 

8.1.3. Pre-Processing Pipeline 

Prior to the data being passed to analytics modules, 

it is subjected to preprocessing. Filtering for noise 

ensures that sensor anomalies resulting from 

external interference (e.g., abrupt wind or shadow) 

are reduced to a minimum. Normalization of data 

ensures that values from various sensors are 

synchronized, whereas sampling mechanisms 

provide for efficient data transfer. This pipeline 

optimizes the efficiency of AI-based anomaly 

classification. 

8.2. Solar Panel and Battery Management 

8.2.1. Charge Regulation 

The energy harvested from solar panels is 

conditioned by a charge controller, keeping 

overcharging and deep discharge at bay. Regulation 

is essential to protect long-term battery life and 

ensure stable operation during attack or failure. 

8.2.2. Battery Storage and Backup 

A rechargeable battery pack is utilized to 

accumulate solar energy for uninterrupted system 

operation. This guarantees that the anomaly 

detection and decoy devices continue to operate 

even during low sunlight or when the conditions are 

cloudy. The battery also energizes local alert 

systems in case of emergencies. 

8.2.3. Inverter and Load Management 

The stored energy is passed through an inverter for 

AC/DC conversion. This module allows testing of 

real-world appliances connected to the system while 

simultaneously monitoring how cyberattacks may 

affect load balance. Simulated attacks can cause 

abnormal load variations, which the system is 

designed to detect. 

8.3. Sensor and Device Monitoring 

8.3.1. LDR Monitoring 

The LDR records real-time irradiance levels, which 

are linearly related to the efficiency of solar panels. 

If anomalous irradiance values are detected when 

the physical surroundings are stable, the system 

tends to suspect spoofing or tampering of sensor 

readings. 

8.3.2. PIR Intrusion Detection 

The PIR sensor continuously detects the presence or 

absence of humans around the panel or battery 

configuration. Unauthorised presence is treated as a 

possible intrusion and triggers both alert systems 

and logging onto the blockchain. 

8.3.3. Physical Alert Indicators 

Once anomalies are sensed, an LED and a buzzer 

are triggered to deliver immediate feedback to 

surrounding operators. This constitutes a double 

alerting system—both digital (dashboard warning) 

and physical (on-site indication). 

8.4. Decoy Device and Moving Target 

Defence (MTD) 

8.4.1. Decoy Device Simulation 

A decoy system in the virtual environment 

replicates authentic energy data streams, presenting 

attackers with a deceitful dataset. This deception 

exhausts attacker resources and distracts them from 

actual infrastructure. 

8.4.2. Dynamic Reconfiguration 

The MTD module ensures data paths, IP addresses, 

and service ports are modified often. This 

randomness makes the system unpredictable, 

lowering the success rate for repeated cyberattacks. 

8.4.3. Digital Twin Integration 

The decoy system includes a digital twin of the solar 

plant, simulating actual operating behaviours like 

variations in power during day/night cycles. This 

renders the decoy undistinguishable from the real 

system [10]. 

8.5. AI-Driven Anomaly Detection 

8.5.1. Model Training 

Historical solar and sensor data are used to train 

machine learning models under both normal and 

attack conditions. Classification and anomaly 

detection are performed using algorithms like 

Random Forest, SVM, and LSTM Autoencoders. 

8.5.2. Real-Time Prediction 

In real-time operation, the AI model continually 

analyses incoming sensor data. Identified anomalies 

are categorized into types of spoofing, denial-of-

service, or sensor tampering. The response system 

is triggered automatically from these predictions. 

8.5.3. Evaluation Metrics 

The AI system is tested based on precision, recall, 

and F1-score to reduce false positives. Continuous 

retraining prevents evasion of new attack patterns, 

enhancing long-term robustness. 

8.6. Blockchain-Based Logging 

8.6.1. Immutable Records 

Blockchain technology guarantees that system 

events such as sensor data and anomalies detected 
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are stored in tamper-proof format. This provides 

forensic integrity for any future analysis. 

8.6.2. Transparency and Auditing 

Blockchain logs can be audited by administrators to 

ensure detected attacks were properly identified and 

reacted to. This establishes trust within the system 

in the form of an immutable operations record. 

8.6.3. Distributed Security 

Blockchain decentralizes the logging function, 

removing points of failure. Even if the attackers get 

hold of one device, logs on the distributed network 

are safe. 

8.7. Alert Control and Communication 

8.7.1. Local Response 

The buzzer and LED give out instant local 

notifications, allowing on-site technicians to 

respond immediately before more system damage 

can be caused. 

8.7.2. Remote Notifications 

Critical anomalies are escalated to administrators 

via Telegram messages, SMS (Twilio API), or 

email notifications. This facilitates immediate 

escalation to decision-makers. 

8.7.3. Flask Dashboard Alerts 

The dashboard consolidates all alerts, providing 

real-time visualizations of anomalies with 

accompanying context. This provides operators 

with a clear view of the system status. 

8.8. Dashboard and Visualization 

8.8.1. Real-Time Monitoring 

The dashboard in Flask shows real-time solar panel 

output, battery health, and environmental sensor 

measurements. This enables operators to monitor 

both energy production and cybersecurity status 

concurrently. 

8.8.2. Graphical Analytics 

Matplotlib and Chart.js are used to create interactive 

charts and heatmaps of anomalies. Historical trends 

and real-time variations are presented side-by-side 

for enhanced situational awareness. 

8.8.3. Incident Logging 

All identified anomalies and intrusion attempts are 

recorded and made available via the dashboard. 

Operators can see past events, create report 

9. Results And Discussion 

9.1. Sensor Reading Dashboard 

This figure shows the real-time monitoring 

dashboard of the solar energy system integrated 

with cyber security the interface displays estimated 

solar power, temperature, humidity, light intensity, 

motion detection. This consolidated view 

demonstrates the interaction of energy parameters 

Shown in Figure 4, 5 and 6. 

 

 
Figure 4 System Overview with temperature, 

humidity, LDR, motion, and power 

 

 

 
Figure 5 Solar Data Trends 

 

 
Figure 6 Live Results 

  

This figure illustrates the continuous telemetry for 

the temperature, humidity, LDR irradiance, voltage 

and current readings and battery charge state these 
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parameters confirm the effectiveness of real-time 

environmental monitoring. The fluctuation proper 

sensor simulation and data logging. 

 

Table 1 Performance Metrics 

Metric Value 

Mean Precision (P) 0.821 

Mean Recall (R) 0.784 

Mean F1-Score 0.802 

 

This Sensor reading generated by the hardware to 

detect the threats Shown in Table 1. 

9.2. AI Ano moly Detection 

 

 
Figure 7 AI Anomaly Detection Graph 

 

 
 

 
Figure 8 AI Anomaly Detection result Normal 

VS Attack 

 

• Normal vs Anomalous Data 

Differentiation: The figure shows how the 

AI anomaly detection model tells apart 

standard sensor readings from suspicious 

activity. A clear separation between normal 

and abnormal trends shows the model's 

ability to learn. 

• High Detection Accuracy: The results 

reveal a consistently high accuracy in 

spotting anomalies in temperature, current, 

and irradiance readings. This ensures that 

any unusual behaviour in the solar energy 

system is quickly detected Shown in Figure 

7 and 8. 

• Low False Alarms: The anomaly model 

greatly reduces false positives, which means 

that real solar panel data is not wrongly 

classified as attacks. This builds trust and 

reliability in the cybersecurity framework. 

• Response to Attack Simulation: During 

simulation of attack scenarios, the graph 

displays an immediate increase in anomaly 

alerts. This shows the AI’s effectiveness in 

identifying sudden, unexpected changes in 

system parameters Shown in Table 2. 

• Overall System Reliability: The figure 

confirms that AI-based anomaly detection 

improves the solar energy monitoring 

process. By ensuring early detection and 

accurate classification, the system remains 

strong against cyber-attack attempts. 

 

Table 2 Performance Metrics 

Metric Value 

Precision 0.842 

Recall 0.801 

F1-Score 0.820 

 

This anomaly detection was able to identify the 

threats caused by the cyber attacker.   

9.3. Moving Target Defence System 

 

 
Figure 9 Graph of MTD 
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Figure 10 Result of MTD 

 

9.4. Moving Target Defence (MTD) 

Performance 

• Dynamic Reconfiguration the figure 

illustrates that the MTD mechanism often 

tweaks system stuff like port numbers, 

sensor mapping, or access routes   this 

ongoing switch-up makes it super tough for 

hackers to guess or take advantage of set 

weak spots Shown in Figure 9. 

• Attack Surface Reduction by keeping a 

tight grip on key resources, we can shrink 

down the chances of getting hit by attacks 

the graph shows that the chance of a 

successful hack drops when MTD ramps up 

how often it changes things up. 

• Increased Attacker Effort the results show 

that MTD makes attackers work harder and 

spend more cash to break into the system. 

this hold-up gives the defenders more time 

to spot and deal with any bad stuff 

happening Shown in Figure 10. 

• Synergy with AI Detection MTD alone can 

throw attackers off but mixing it with AI 

anomaly detection really beefs up our 

defences. the graph shows MTD's role in 

steering weird traffic to fake targets, and the 

AI checks it out to see if it's a real threat 

• System Reliability under Adversity the 

performance graph shows that there are way 

fewer successful attacks when MTD is on 

than when it's just a static defence. this 

shows that MTD adds a smart, proactive 

defence layer, keeping an eye on solar 

energy operations without any hiccups. 

The Confusion Matrix is a tool for evaluating 

performance in classification problems. It shows 

how well a model tells apart actual and predicted 

classes. It provides counts of True Positives (TP), 

True Negatives (TN), False Positives (FP), and 

False Negatives (FN). By looking at the matrix, you 

can derive metrics like accuracy, precision, recall, 

and F1-score to judge the model’s effectiveness 

Shown in Figure 11, 12 and 13. 

 

 
Figure 11 Confusion Matrix of MTD 

 

9.5. Blockchain Log Activity 

 

 
Figure 12 Graph of Blockchain Log Activity 

 

 
Figure 13 Live Blockchain Logs of Attack 

 

 
Figure 14 Result of Blockchain Log Activity 

 

The blockchain module was integrated into the 

system to provide secure, immutable, and 

transparent logging of all solar energy and 

cybersecurity events. Each transaction corresponds 

to either a normal sensor reading (e.g., solar voltage, 

current, temperature) or a cyber anomaly event 

detected by the AI anomaly detection system. 
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• Immutable Logging: Every activity, such 

as solar power generation records, inverter 

status, and detected attacks, was stored on 

the blockchain. This ensures that no log can 

be altered or deleted, providing strong 

forensic evidence for future audits. 

• Transaction Volume: During testing, an 

average of 50–100 blockchain transactions 

per hour were recorded, depending on 

sensor frequency and attack simulations. 

Higher activity was noted when 

cyberattacks (simulated by abnormal spikes 

in current or unauthorized access attempts) 

occurred Shown in Figure 14. 

• Latency and Throughput: The blockchain 

showed an average transaction confirmation 

time of 2–3 seconds, which was acceptable 

for near-real-time monitoring. The system 

maintained a throughput of around 30 

transactions per minute, proving scalability. 

• Security Benefits: Blockchain ensured 

tamper-proof records, eliminating the risk of 

log manipulation by an attacker. This 

created trust among system stakeholders 

(grid operators, engineers, and auditors). 

• Visualization of Logs: On the dashboard, 

blockchain activity was represented as a 

chronological ledger showing transaction 

IDs, timestamps, data values, and anomaly 

flags. This provided operators with a 

transparent overview of system health and 

security events Shown in Table 3 All models 

Detection Performance. 

  

 

Table 3 All models Detection Performance 

Module Precision (P) Recall (R) F1-Score 

Ai anomaly detection 0.95 0.93 0.94 

Blockchain logging 

Integrity 
1.00 1.00 1.00 

Moving Target 

Defence 
0.91 0.95 0.94 

Alert & Response 

System 
0.92 0.94 0.93 

Overall System 

Performance 
0.95 0.94 0.94 

9.6. Digital Twin Deviation  

 

 
Figure 15   Digital Twin Deviation 

 

• The Digital Twin's weirdness points out the 

difference between what we thought the 

system would do (in the twin) and what the 

real sensors are telling us about the solar 

energy setup Shown in Figure 15. 

• If there's anything off, it could mean there's 

something wrong with how the system's 

working, like glitches or even someone 

messing with it, so we got to check it out. 

• Small deviations are just the usual ups and 

downs because of the environment, but big 

ones could mean someone's messing with 

the sensors or there's a cyberattack going on. 

• The model keeps getting smarter by learning 

from both fake and real data, cutting down 

on the wrong alarms and making spotting 

the odd stuff way better 

• Overall, Digital Twin deviation serves as a 

predictive measure, enabling early detection 

of operational risks and ensuring the 

resilience of the solar energy infrastructure. 
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Figure 16 Final Setup 

 

This project mainly focusing about hooking up 

sensors like voltage, current, temp, and security 

alarms to a microcontroller for live tracking. the 

data we got is first cleaned up at the edge to get rid 

of any noise, then it's sent over to the cloud where it 

gets crunched for deeper insights, all while keeping 

it safe and sound. a blockchain ledger keeps sensor 

data and cyber stuff super secure and trustworthy, 

making everything crystal clear on the software 

side, AI models running on the cloud spot weird 

stuff, catch possible dangers, and send the warnings 

when they encountered  something fishy going on a 

web dashboard lets you see sensor info, system 

status, and important alerts all in one place for easy 

checking in short, putting together hardware and 

web stuff gives us a solid, safe, and smart system for 

keeping an eye on energy use and safety Shown in 

Figure 16 and 17. 

 

 
 

 
Figure 17 Final Result 

 

10. Test Cases  

The test for the new solar power simulation system 

with web safety parts was carried out with many 

clear steps Shown in Table 4. 

 

 

Table 4 Test Cases 
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In Test One, we made sure the parts that measure 

voltage, flow, and heat gave correct real-time 

information, and checked that the gear set and 

calibration were working well. Test Two focused on 

the sound-cut parts, where shifts and outside noises 

were reduced to give clear, solid signals to the 

working part. To check the system's smartness, Test 

Three introduced fake problems like sudden flow 

changes and voltage drops and checked if the AI 

fault detection part could spot unusual trends. At the 

same time, Test Four made sure each part's logs and 

events were kept safe using a chain block method, 

proving they were solid and safe from changes. The 

ease of use was checked in Test Five, which showed 

that the web board worked well, displaying real-

time data, logs, and alerts for end-users. 

Additionally, Test Six proved the alert system by 

faking incorrect inputs, where quick notes were 

triggered, showing the quick response of the system. 

In the same way, Test Seven made sure the data 

rules fit well in all sensor parts, ensuring they were 

suitable for AI and chain block steps. The system's 

performance was scored in Test Eight, which timed 

the delay from fault detection to alert creation, with 

response times under two seconds. For long-term 

reliability, Test Nine checked the storage and 

retrieval of logs from the chain block and data 

storage parts, making sure the data stayed complete 

and good for detailed checks. Finally, Test Ten 

proved the full process from start to finish, making 

sure all parts—from data collection and AI-based 

calculations to chain block logs and web board 

displays—worked smoothly, showing the system's 

strength and real-world use. 

Discussion  

He came up with a plan to use solar power along 

with network safety. This new method helps us 

track how much solar energy is being made and 

detect big online threats. Using parts like solar cells, 

power converters, large batteries, light and heat 

tools, and loud beeps, the system shows live 

information. It tells us how much power is being 

made, stored, and what the air is like. With smart 

monitoring plans, any unusual power flow or bad 

logins are spotted quickly. This makes the setup 

safer and more efficient. Next, it uses a secure web 

logbook to keep records. This ensures that no one 

can change past logs, which builds trust. Using AI 

and good web plans, it reduces the risk of 

cyberattacks. Web tools also let us view and manage 

everything easily. The data from charts and checks 

shows that it works quickly and well in finding bad 

things. Overall, this tool works well in real life 

where solar power needs to be safe from tech 

failures and online dangers. Tests show that 

combining web monitoring, smart AI, and secure 

logbooks can create a full, large, and safe way to 

manage power. More work will make this system 

bigger and add smart care plans to keep it strong and 

working smoothly. 
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