RESEARCH ARTICLE

: International Research Journal on Advanced Science Hub
; - 2582-4376

www.rspsciencehub.com
Vol. 07, Issue 11 November

h

W) Check for updates

RSP Science Hub http://dx.doi.org/10.47392/IRJASH.2025.107

Real-Time Data Engineering for Smart Applications
Souvari Ranjan Biswal*
1Symbiosis International University, Pune, India.

Article history Abstract

Received: 13 September 2025 The digital transformation era is characterized by intelligent applications
Accepted: 06 October 2025  that increasingly rely on rapid processing and analysis of large, non-
Published-07 November 2025 homogeneous data streams. These smart systems are built on real-time data

ublished-U /s November engineering, enabling seamless data ingestion, transformation, and decision-
making across industries such as healthcare, transportation, manufacturing,
and finance. The paper will look into the architectural principles, enabling
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by federated learning, data meshes, and quantum computing. The provided
insights make a detailed picture of the development of the operational and
strategic landscape of smart technologies in real-time by applying data
engineering.
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1. Introduction

The increasing popularity of digital technologies
in the everyday life of people has led to the
appearance of smart applications, the features of
which are the presence of opportunities to process
significant streams of data in a real-time manner,
adapt to the behavior of users, and make
independent decisions. Smart health monitoring
devices, industrial automation, and intelligent
transportation systems are just a few of the
applications that require a robust, scalable, and
efficient data infrastructure that will offer real-
time data processing, decision-making, and
responsiveness. These intelligent applications are
therefore based on real-time data engineering. It
enables the possibility to assemble, transform, and
transfer information in the quickest possible as
well as quicker than actual-world actions occur
[1][2]. The pressure to offer real-time data streams
due to the physical structure of the city being
replaced by the physical infrastructures of smart
systems, healthcare, finance, manufacturing, and
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other industries increases. The intersection of edge
computing, technologies of big data, and artificial
intelligence supports this change since, when
combined, smart applications cannot only perceive
everything around them but also intelligently act
in it. This is made possible through real-time data
engineering that monitors the whole process of
information flow, wherein data are collected, pre-
processed, analyzed, and transmitted to the
consumers within milliseconds [3][4]. In this case,
it should be noted that the evolving form and
functionality of real-time data engineering is to
plan and develop intelligent applications. The
paper explains the key components, questions, and
prospects of real-time data engineering and
provides one of the concepts of how they are used
to make smart systems more stable and responsive.
I will discuss the architectural blueprints of real-
time data engineering, technology that enables it to
be applied, challenges and limitations of these
systems, and future trends that will be defining the
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field in the coming paragraphs. Passing on to this
preliminary understanding of the concept, we
move on to examine the design behind real-time
data engineering systems and the major
components and data flow processes that are
required to enable real-time operations.

2. Real-Time Data Engineering
Architectural Foundations

The architecture of a real-time data engineering
system is designed in such a manner to ensure
timely and reliable raw data to actionable
intelligence, as shown in Figure 1. These
architectures are decomposed on the foundations
of the data ingestion layers, stream computing
engines, storage engines, and output interfaces,
which create a pipeline that employs the high
velocity, high volume data with low latency [5][6].
Consumption of information is normally
processed by a distributed system that can access
it from a heterogeneous source of information that
can include IoT sensors, mobile applications,
social media services, and enterprise software.
Such feeds may produce structured, semi-
structured, or unstructured data, and, therefore, to
enable a seamless integration, an elastic ingestion
platform, such as Apache Kafka, Flume, or
Amazon Kinesis, is required. The ingestion layer
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is often deployed in a manner that is scalable and
fails gracefully since the existence of a bottleneck
at this stage can compromise the responsiveness of
downstream processing units [7]. Once data has
been ingested, it is then forwarded to the real-time
processing layer, where the stream processing
frameworks, e.g., Apache Flink, Spark streaming,
and Storm, are employed to transform, aggregate,
and filter streams of data. The reason why these
tools are chosen is because of the low-latency
processing option and the capability to support
complex event processing (CEP) that enables the
system to identify patterns, correlation, and
anomalies in the data flow [8][9]. The output of
this layer is then passed directly to the downstream
applications, or stored temporarily in the
distributed and in-memory data stores such as
Redis or Apache Druid, where they can be fast
queried and run with analytics. To ensure that
insights created through data are credible, a layer
of real-time analytics, which does not tie to
machine learning models, ought to be included in
the modern architecture. Such models can be
trained in batches and deployed to make a real-
time inference to enable applications to be capable
of making predictions and decisions as the data is
being processed.
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Figure 1 Architectural Foundations of Real-Time Data Engineering

This requires the functionality to feed ML models
into the data pipelines; this encompasses model
lifecycle management, model versioning, and real-
time inference engines such as Tensorflow Serving
or ONNX runtime [10]. Along with it, the

instruments of orchestration, such as Kubernetes
and Apache Airflow, are deployed to manage and
scale containerized microservices in a manner that
the various components of the data pipeline would
cooperate and be resilient. There are also other
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tools that could be employed to operate a system
and monitor its health, provide warnings and
visualization to ensure that the essentials of a team
maintain the performance of a system at
reasonable levels, considering the varying
workloads [11]. It is in this architectural backdrop
that we shall address the enabling technologies
that support the real-time data engineering life
cycle and make these complex pipelines a reality
in real-life smart applications.

3. Enabling Technologies for Real-Time
Smart Systems

The use of real-time data pipelines in smart
applications will be highly reliant on the
integration of the latest technologies that enable
the ingestion, processing, analytics, and delivery
of data. Not only do such technologies impact the
performance and accuracy of smart systems, but
they also determine the scalability, reliability, and
efficiency of smart systems in dynamic
environments. The concept of edge computing is
also relevant in the removal of latency because the
information is computed closer to the source,
thereby doing away with the delays in
communicating huge amounts of information to
the central cloud servers. The first level of data
processing can be used to filter, aggregate, and
process data, which is then transmitted only to
central nodes in applications such as autonomous
driving or smart grid monitoring, where
milliseconds can be paramount [12] [13]. Cloud-
native platforms are other enabled systems that
complement edge computing by providing on-
demand and elastic compute and storage.
Serverless cloud stream processing systems like
AWS Lambda, Azure Stream Analytics, and
Google Cloud Dataflow enable developers to
automatically implement serverless stream
processing functions, which automatically scale
with workload. This paradigm also facilitates the
maintenance of infrastructure because data
engineers can focus on logic and not on the
provisioning [14]. The other disruptive trend is the
integration of artificial intelligence (Al) in real-
time pipelines, where intelligent applications can
be used to create insights, predict results, and
enable the decision-making process to be
automated. The data flow is increasingly being
modified dynamically in response to new data by
frameworks like Apache Beam or Kafka streams
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to incorporate Al models into the data flow. The
facial recognition in surveillance and anomaly
detection in financial transactions are examples of
such integration that can be used in real-time [15].
Besides, the role of containerization and DevOps
in the mechanism of making real-time data
engineering a possibility cannot be overestimated.
One can use Docker and Kubernetes technologies
to make sure that the same environment of
deployment is applied during the process of
development, testing, and production. These tools
will be used in combination with constant
integration and constant deployment (Cl/ CD)
pipelines to ensure data pipelines and analytical
models are tested and deployed in the shortest
possible time without disrupting the uptime of the
systems [16]. Security technologies are also
important, particularly in real-time systems that
have sensitive information such as health or
finances. The norms include intrusion monitoring
in real time, role-based policies and access control,
and encrypting the rest and transit. Real-time data
architecture is integrated with such technologies as
TLS, OAuth, and SIEM (Security Information and
Event Management) systems to maintain the
confidentiality, integrity, and availability [17].
Since the technological pioneers of real-time data
engineering have been discussed, there is a need to
possess illuminating knowledge of the real-life
implementation of these systems in various smart
applications. This comes in handy to create the
context of the discussion for the real-world case
and illustrate the practical worth and the outcomes
of correctly designed data pipelines.
4.  Applications of Real-Time Data
Engineering in Smart Systems

Having mentioned the technical and architectural
foundations of real-time data engineering, it is
time to analyze how such systems are applied to
practice  in  smart  surroundings.  The
implementation of smart systems nowadays is
based on real-time data pipes and is proactively
and intelligently reacted to in a broad spectrum of
applications, such as healthcare, transportation,
manufacturing, finance, and urban infrastructure.
Smart patient monitoring systems with real-time
data engineering in healthcare can calculate vital
signs data from wearable devices and sensors in
hospitals to detect an abnormality, such as a
cardiac arrest or respiratory failure. These systems
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take real-time information and utilize predictive
models to forecast adverse outcomes, which may
prove helpful to intervene as soon as possible and
reduce mortality rates [18]. They are also real-
time, and this may be extended to epidemic
surveillance where real-time data streams across
multiple hospitals, laboratories, and any other
open-ended sources can be aggregated to identify
and act on disease outbreaks almost in real-time
[19]. Smart transport is another field that has been
transformed with the real-time capability of data.
Intelligent Transport Systems (ITS) refer to
systems that utilize GPS sensors, traffic sensors,
and vehicle telemetry to detect the conditions of
the road and the movement of the traffic to
facilitate the control of traffic and autonomous
movement of vehicles. Real-time data streams are
also handled to detect congestion and dynamically
regulate traffic lights and recommend other paths
to traffic. Furthermore, autonomous vehicles are
premised on information consumption and
processing of LIiDAR, radar, and cameras that
make decisions in seconds, i.e.,, braking or
switching lanes, in response to environmental
stimuli [20]. Industry 4.0 has been incorporated at
the industrial level, with real-time data
engineering introduced to smart manufacturing.
Production lines are equipped with sensors of loT
sensors and are used to collect information on
temperature, vibration, humidity, and the usage of
machines, which are analyzed in edge and cloud
analytics. Such systems expect equipment
breakdown and pre-plan the maintenance and
optimize production schedules to minimize lost
time and maximize efficiency. Even a few seconds'
delay in the processing of such cases can lead to
defects in the products or system malfunction, and
hence the requirement to reach real-time is
essential [21]. The financial services have been at
the forefront as far as the use of real-time
information solutions is concerned. The high-
frequency trading systems have to have the
capability to manipulate market data, news feeds,
and other economic indicators within less than a
microsecond to execute a trade before their rivals.
Similarly, the fraud detection systems scan the
flow of transactions as they are run to identify any
suspicious patterns, such that unauthorized
transactions may be blocked before processing
them. The success of such applications depends on
the seamless integration of streaming analytics,
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machine learning models, and alert systems with
good data engineering practices [12]. The other
domain where real-time data systems are being
implemented is in urban planning and smart cities.
The city management platforms merge the data of
surveillance cameras, air quality sensors, weather
sensors, and citizen reports to provide the city
authorities with a dynamic and integrated view of
the city. The traffic and level of pollution, and the
state of the infrastructure, are also provided in real-
time on dashboards, in which an individual can
decide more quickly and in a more knowledgeable
manner. One such technology is the smart street
lights that get brighter when there are people
nearby, and this makes the streetlights safer,
besides saving energy [3]. Smart retail is also
assisted by real-time data engineering. In order to
tailor the offers and manage the stock levels,
retailers equip the systems that track customer
movements, purchase transactions, and stock
levels. These systems must be capable of
processing information in real time in order to give
an offer at the right time or to re-order goods
before they go out of stock. The more Al is
applied, the more accurate and relevant the
recommendation engines can be when discussing
the products they suggest to their customers based
on real-time customer data, which ensures a
greater number of interactions with customers and
satisfaction [14]. Smart farming is gaining a lot of
significance as an application in the agricultural
industry. Farmers can schedule their irrigation,
fertilization, and harvest by being informed in real
time regarding the soil sensor, drones, and weather
information. It is possible to make correct
interventions to raise the crop yield and reduce
resource use with the help of machine learning
algorithms run on such data. These systems can
improve productivity besides support
environmental sustainability by cutting down on
the wastage. Despite the examples presented of the
wide-scale impacts of real-time data engineering,
there has been the articulation of advanced
problems in terms of scale, latency, data quality,
and system durability. The following section
discusses these limitations and their potential
solution in a real-life deployment Shown in Figure
2 Applications of Real-Time Data Engineering in
Smart Systems.
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Figure 2 Applications of Real-Time Data Engineering in Smart Systems

5.  Challenges and Limitations in Real-Time

Data Engineering
As much as it is factual that real-time data
engineering may be a revolutionary idea, there are
numerous technical, operational, and strategic
problems with the deployment of such systems on
a large scale. These issues cut across data quality,
system latency, scalability, fault tolerance,
security, and balancing real-time and batch
processes. One of the most important challenges is
the assurance of real-time quality of data.
Streaming data is noisy or incomplete, or
intermittent, particularly in cases where it is
acquired with the help of heterogeneous devices
that operate in dynamic circumstances. The
traditional data cleaning and transformation
methods that are generated to run in batches do not
work well in real time. It therefore means that
organizations must consider adopting lightweight
and high-throughput preprocessing systems,
which is a trade-off between speed and accuracy
of the data [16]. The guarantee of real-time
processing would be based on the ability to reach
sub-second response times, which is hard to
accomplish when processing large and complex
data. The reason for the latency increase can be
network delays, serialization overheads, back
pressure at message queues, etc, all of which are
undesirable to smart systems. They can be solved
with the help of such methods as windowed

computation, data partitioning, and load
balancing; however, they should be well-tuned and
continually monitored [7, 17]. Latency is not only
closely associated with scalability, but it is also
challenging to use in such a situation, where the
speed of data is rather unpredictable. We have a
probability of an explosion in data volumes in
smart cities or in the viral application of social
media. The systems must be scalable horizontally,
necessitating a stateless design, container
orchestration, and auto scaling infrastructure that
dynamically varies the resource allocation based
on workload trends. Live pipelines cannot support
fault tolerance, and it is an obligatory feature in
mission-critical systems like healthcare and
finance. Any failure in gathering, disseminating,
or processing information would lead to missed
events, ineffective outputs, or halting of the
system. The distributed architecture that is
required is resilient on the basis of inherent
redundancy, failover, and exactly-once semantics
of processing. This also makes it hard to design the
system and involves a properly designed testing
and monitoring system [9-12]. Security and
privacy are other challenges. Real-time systems
tend to process sensitive data, which should not
undergo unauthorized access, interception, or
tampering. The reduction of latency must not be
made during the implementation of the real-time
encryption and access control policy, as well as
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secure data transmission protocols. Also, the
privacy regulations (GDPR and HIPAA) are very
stringent in the way they are managed, and one
must integrate compliance mechanisms into the
streaming  procedures.  Maintenance  and
development of real-time pipelines is also a
challenge, which is brought up during operation.
Streaming pipelines cannot be halted and revised,
as is the case with a batch system. The process of
updating the logic process, analysis models, or
altering the schema must be without disrupting the
data flow. This leads to the use of sophisticated
deployment strategies such as blue-green
deployments, feature toggles, and schema
evolution by backward compatibility. It is a
strategic issue that actually requires processing in
real time in a system. All this does not necessarily
require instant processing, and blind application of
real-time architectures can lead to unnecessary
complexity and cost. The organizations must
decide on the business value of immediacy and
must develop mixed systems that combine real-
time and near-real-time and batch processing
where appropriate. These limitations imply that
the field of data engineering needs constant
innovativeness and growth. In the next section, we
will comment on the emerging trends and research
directions aimed at overcoming those problems
and broadening the scope of possibilities of real-
time smart systems.

6. Future Trends in Real-Time Data
Engineering for Smart Applications

Due to the new growth of organizations that create
smart systems, the field of real-time data
engineering is being influenced by a variety of new
tendencies and research discoveries. The trends
are not just the reactionary measures to the
challenges mentioned above, but rather proactive
trends of the creation of smarter, self-reliant, and
context-related data systems. Integrating machine
learning, federated architecture, data mesh
paradigms, and quantum computing will transform
reality on what is possible in real-time pipelines of
data. One of the most important relocations is the
one related to the integration of real-time machine
learning and automated management of models
into data pipelines. As the role of dynamism in
settings grows in importance, structures of
deployment of models, as with those of a fixed and
trained set of models, are being replaced by
systems that are able to learn on the fly and learn
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with time. This means such systems can be
faithfully updated to the current data, with new
information as it is available, and thus can still be
accurate, even in concept drift situations with the
trends of data over time. Such development
requires real-time feature engineering, automatic
data validation, and monitoring of the data pipeline
models per se [1]. The future of federated data
architecture is also bright. The latency is also
eliminated in federated models since the
processing of the data may be carried out on the
edge devices or on an organizational level, unlike
centralized systems, and the problem of data
privacy can be solved. Real-time federated
learning model allows a group of devices or other
data silos to learn models together, without
exchanging actual data, which is suitable in the
setting of healthcare, finance, and l0T ecosystems.
These forms of distribution systems require a high
degree  of  coordination and  effective
communication systems to coordinate updates and
consistency in the system [2, 3]. The other
groundbreaking paradigm is the data mesh, which
suggests a decentralized type of data architecture
that internalizes the data as a product and allows
cross-functional teams to possess and manage their
data pipe. Domain teams create live pipelines that
are used and operated, in contrast to a central data
engineering  organization that  encourages
scalability and agility. It shares a similar
methodology with DevOps and microservices and
needs to be reliant on a broad range of standardized
APIs, observability, and self-service platforms to
function. Real-time data engineering is also being
affected by the proliferation of low-code and no-
code platforms. The platforms can allow business
users and analysts to build data streams,
dashboards, and simplistic real-time models
without much knowledge of the program.
Although they are not applicable in a very complex
use case, they also reduce the barrier to real-time
analytics entry in a small enterprise business or a
department considerably. The guidelines with
artificial intelligence are being added to the drag-
and-drop tools that are simplifying the pipeline
building and maintenance process as well [14].
Quantum computing is a highly emerging field
that is being considered to enable real-time data
engineering in the future. The amount of
processing that the quantum systems can perform
is exponential and would be capable of converting

International Research Journal on Advanced Science Hub (IRJASH) 980



Souvari Ranjan Biswal et al

stream processing and, more specifically, complex
optimization and real-time simulations, which is
computationally infeasible currently. The general-
purpose quantum processors will not come into
being for years later but the hybrid quantum-
classical schemes are already being tested on real-
time logistics optimization and fraud detection.
Streamless processing of serverless is still a
developing infrastructure, and is likely to reinvent
the economy and scale of real-time pipes. The
serverless model fully gets rid of the infrastructure
management and allows developers to concentrate
on the business code, and be automatically scaled
up and down according to demand. Innovation to
solve the cold-start latency and more advanced
semantics of the processing process is also being
made in this region to make it a more generalized
usage in smart applications [6-9]. There is also a
focus on the ethical issues of Al and their
explicability. Real-time interpretation and
justification of decisions is obligatory because
autonomous systems are capable of applying real-
time decisions in their areas of work, including law
enforcement, healthcare, and finance. The next
generation pipelines would also require them to
contain real-time explainability systems that
would enable the wuser to have a clear
understanding of how the models function and
their confidence and provenance of data [7].
Finally, multi-modular  real-time  pipeline
perforation data fusion also exists. One stream can
be used to combine audio, video, text, and sensor
data, and, in this way, smart systems have a more
contextual understanding of their environments. It
is especially relevant to autonomous systems,
smart surveillance, or immersive systems such as
AR/V/R that require making decisions on the basis
of a huge number of different and simultaneous
types of information. Such systems have an area of
current research and development, which is the
synchronization, bandwidth, and processing
efficiency. These new trends point out that real-
time data engineering will be smarter,
autonomous, decentralized, and user-friendly in
the future. The final part of this article provides the
conclusion of the main findings and speculates on
the long-term outcomes of the same industry and
the society concerned by assuming that innovation
is the main theme of this development.
Conclusion
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One of the pillars of smart application is real-time
data engineering, which enables a system to sense,
assess, and respond to the world on a new level
never experienced before. The position of real-
time data processing has significantly expanded in
scope and significance since its inception as an
architectural tool to the innovative application in a
range of fields, such as healthcare, transportation,
manufacturing, and city planning. The paper has
taken the chronology of real-time data
engineering, starting  with  the  simplest
architecture, which is a combination of the
ingestion, stream processing, storage, analytics,
and delivery layers. One of the enabling
technologies, which the article has already
mentioned, for Al and containerization is to allow
these systems to scale with a small latency. The
multiple applications proved the practical impact
of the skills in which lives are saved, cities
optimized, and businesses transformed through the
intelligent application of streaming data. This
potential has however great challenges. The
quality of data is not very easily maintained as
well, latency is also low and must be maintained,
scalability is not a trivial issue either and it must
be addressed at a higher level, fault tolerance is
also not a trivial issue and must be approached at
an advanced level and finally, security is also not
a trivial issue and must be addressed at an
advanced level. The limitations highlighted in this
case have illustrated the importance of appropriate
planning, continuous observation, and
experimentation in the development of real-time
systems. In the future, real-time data engineering
will be affected by a synergy of disruptive trends
online learning, federated models, data mesh
structures, quantum computing, and ethical Al,
among others. These developments are able to
introduce even smarter applications and make
them more versatile, decentralized, and available,
but also pose new requirements of transparency,
fairness, and accountability. Eventually, as the
idea of smart applications is incorporated into
society, the work of data engineers, system
architects, and policymakers also grows
correspondingly. The present requirement is no
longer to develop fast and scalable systems, but
ethical, explainable, and resilient. The data
engineering, as such, however, is not only a
technical vocation, but a social need, and it
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determines the relations of man to machines and to
other people surrounding him.
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