
RESEARCH ARTICLE

RSP Science Hub

International Research Journal on Advanced Science Hub
2582-4376

www.rspsciencehub.com
 Vol. 07, Issue 11 November

http://dx.doi.org/10.47392/IRJASH.2025.110

 OPEN ACCESS 1000

Client-Side Threats in SPAs: Modeling Security Risks in Popular JavaScript

Framework
Miriyala Kiran Kumar1, Dr. Kopparthi Suresh2
1PG Scholar, Bhimavaram Institute of Engineering and Technology, Pennada
2Professor and Principal, Bhimavaram Institute of Engineering and Technology, Pennada

Emails: kkm2404@gmail.com1, sureshkgrl@gmail.com2

1. Introduction
Single Page Applications (SPAs) have

transformed modern web development by

delivering faster, more seamless user experiences

compared to traditional Multi-Page Applications

(MPAs). Instead of reloading entire pages, SPAs

load a single HTML document and dynamically

update content using JavaScript and AJAX.

Frameworks like React and Vue.js have become

the preferred tools for building these high-

performance, interactive web apps. However, this

shift to client-side rendering introduces new

security challenges [21]. SPAs rely heavily on

browser-based logic, client-side routing, and APIs

for crucial tasks such as authentication and data

Article history Abstract

Received: 17 September 2025

Accepted: 09 October 2025

Published: 25 November

2025

Keywords:

Client-side Security, React,

Vue.js, Single Page

Applications (SPAs Threat

Modeling, Cross-site

scripting, (XSS), Web

security assessment, JWT.

Single Page Applications (SPAs) have reshaped web development by

improving responsiveness and interactivity, but the shift of application logic

and data handling to the client side has introduced security challenges that

traditional server-centric models do not adequately address. This study

proposes and validates a threat model specifically designed for SPAs,

focusing on two widely adopted JavaScript frameworks, React and Vue.js.

Two prototype applications with equivalent functionality were developed and

evaluated using a modified STRIDE methodology, combining static analysis

tools (ESLint, SonarQube, Snyk), dynamic testing tools (OWASP ZAP, Burp

Suite), and manual inspection of client-side code and runtime behavior. The

analysis identified common vulnerabilities across both frameworks, including

DOM-based XSS, insecure token storage, broken route guards, and exposed

API endpoints. React showed higher risk when unsafe rendering practices

such as dangerously SetInnerHTML were used, while Vue’s vulnerabilities

were linked to insecure use of v-html and un validated dynamic imports.

Mitigation strategies, including input sanitization, Http Only cookie-based

token storage, Content Security Policy (CSP), and strict route guards,

significantly reduced vulnerabilities. This work delivers a structured SPA-

specific threat model and reproducible methodology, providing developers

and security practitioners with actionable guidance for building more secure

client-side applications.

Miriyala Kiran Kumar et al 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1001

management. While these features improve

usability and efficiency, they also increase the

application’s attack surface. Common

vulnerabilities in SPAs include DOM-based

Cross-Site Scripting (XSS), token leakage,

exposure of API endpoints, and broken access

control due to inadequate route protection.

Traditional web security [22] models and testing

tools often fall short when applied to SPAs.

Methods like STRIDE may not fully address the

dynamic behavior and unique architecture of

modern JavaScript frameworks. Similarly,

security scanners like OWASP ZAP struggle to

effectively analyze SPA content and client-side

logic. This research addresses these challenges by

creating a client-side threat model tailored

specifically for SPAs, with a comparative focus on

React and Vue.js. It analyzes how these

frameworks’ design decisions, templating, and

data binding mechanisms influence security risks

[23]. Using practical testing and code analysis, this

study uncovers how SPAs handle or fail to handle

key vulnerabilities, professionals with a clear

threat model, a comparative framework analysis,

and actionable mitigation strategies. By doing so,

it bridges the gap between traditional threat

modeling and the complex security needs of

modern SPA architectures. Development and

validation of a client-side threat model tailored to

SPA architecture. Framework-specific

vulnerability assessment of React and Vue.js.Real-

world security testing using static analysis tools

(ESLint, SonarQube) and dynamic testing tools

(OWASP ZAP, Burp Suite). Implementation of

effective mitigation strategies for common client-

side security risks. Proposal of a reusable,

framework-agnostic methodology for frontend

security evaluation in JavaScript-based SPAs.

2. Literature Review

Single Page Applications (SPAs) represent a

significant evolution in web application

architecture. With client-side frameworks such as

React and Vue.js, modern applications perform

much of their logic on the frontend. This

architectural shift has introduced new client-side

security challenges that traditional threat models

and server-focused mitigation strategies fail to

fully address. This section reviews existing

literature on web application security, SPA-

specific vulnerabilities, framework-specific risks,

and threat modeling approaches relevant to this

study. Web security has traditionally concentrated

on server-side vulnerabilities such as SQL

Injection, Cross-Site Scripting (XSS), and

authentication flaws, as outlined in the OWASP

Top 10 [14]. However, the architectural transition

to Single Page Applications (SPAs) has shifted

much of the attack surface to the client side,

exposing new risks. Early studies highlighted how

XSS evolved into DOM-based variants driven by

JavaScript document modifications, making

detection harder with traditional methods [12],

[13]. The growing complexity of frontend-heavy

systems was further emphasized by Kornienko et

al. [12] and Christakis et al. [13], who showed that

static-only or server-focused threat models fail to

capture SPA-specific vulnerabilities. Framework-

level behaviors significantly affect security

posture. React’s JSX provides safe defaults but

becomes dangerous when developers use insecure

functions such as dangerouslySetInnerHTML [4].

Similarly, Vue.js escapes content by default, yet its

v-html directive and unsafe plugin integration

enable content injection [8]. Comparative studies

confirmed that both frameworks are highly

dependent on developer practices rather than

inherent safeguards [3], [8]. Case analyses by

RadixWeb [4] showed recurring React risks in

state handling, weak authentication flows, and

insecure dependencies, while Hellquist [3]

identified framework-level weaknesses tied to

misused libraries and poor sanitization. Industry

reports validate these risks. ENISA [5] and

Veracode [10] highlighted insecure client-side

routing, token mismanagement, and API misuse as

recurring vulnerabilities in modern web

applications. MITRE’s CWE Top 25 [6]

underscored that critical weaknesses like improper

input handling and insufficient authentication are

directly exploitable in SPAs. Similarly, the Snyk

JavaScript Security Report [7] and OWASP

AppSec 2023 guidance [9] warned of insecure

token storage in localStorage, dependency-based

vulnerabilities, and poor Content Security Policy

(CSP) enforcement. Threat modeling approaches

have evolved accordingly. Microsoft’s STRIDE

model provided a foundation [14], but researchers

such as Gupta et al. [11] proposed hybrid SPA-

specific models incorporating Data Flow

Diagrams (DFDs), attack trees, and runtime

Client-Side Threats in SPAs: Modeling Security Risks 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1002

analysis. Practical DevSecOps [1] and ISACA [2]

further recommended embedding threat modeling

into DevSecOps pipelines, ensuring risks are

continuously reassessed during agile development

cycles. OWASP [9] added SPA-specific risks like

API fuzzing, Broken Object Level Authorization

(BOLA), and insecure deserialization. Babaey and

Ravindran [20] extended this by proposing AI-

driven frameworks for detecting evolving cross-

site scripting (XSS) patterns in client-side

applications. Recent literature and industry

updates between 2024 and 2025 underscore an

escalating threat landscape. ENISA [5] highlighted

supply chain vulnerabilities within frontend

ecosystems, while the Security Industry

Association (SIA) [19] identified client-side attack

vectors as top security megatrends. Wijckmans

[17] and TechRadar/c/side [18] documented

quarterly attack reports showing a surge in DOM-

based XSS and token theft in production SPAs.

Cohen [16] provided a novel framework for

browser security posture analysis, demonstrating

the importance of runtime protections like CSP

and Subresource Integrity (SRI) [15]. Testing

methodologies align with this hybrid approach.

OWASP ZAP and Burp Suite remain essential

runtime analysis tools but often require headless

browsing to properly evaluate JavaScript-heavy

interfaces [10]. Static tools like ESLint,

SonarQube, and Snyk flag unsafe coding patterns

[7], while runtime defenses such as CSP and SRI

[15] offer added hardening layers. Christakis et al.

[13] argued that only composite approaches—

merging static, dynamic, and runtime analysis—

can holistically address SPA vulnerabilities.

Identified Gaps in Literature: Despite growing

recognition of SPA-specific risks, few studies

directly compare React and Vue.js under

controlled experimentation. Existing reports [1],

[2], [5]–[7], [19] stress the need for reusable threat

models tailored to SPAs that integrate with

DevSecOps workflows. Specific gaps include the

lack of systematic mappings between SPA

behaviors (e.g., token storage, route guards, and

dynamic imports) and known attack vectors. This

study builds upon these gaps by providing a

comparative, framework-specific threat model and

empirical evaluation of React and Vue.js.

3. Methodology

This chapter outlines the research methodology

used to analyze and model client-side security

threats in Single Page Applications (SPAs)

developed with two widely adopted JavaScript

frameworks: React and Vue.js. The approach

involves creating controlled test environments,

implementing comparable sample applications,

applying tailored threat modeling techniques,

selecting appropriate security assessment tools,

and establishing evaluation metrics for

vulnerability detection and mitigation. The

process, summarized in Fig. 1, follows a structured

workflow that begins with experimental setup and

progresses through application development,

threat modeling, security testing, mitigation, and

comparative evaluation. This methodology

provides a rigorous and reproducible framework

for the comparative security [24] analysis of SPA

architectures. Research Design: The study adopts

a comparative experimental design that integrates

qualitative threat modeling with quantitative

vulnerability assessment. Two SPAs—one built

with React and the other with Vue.js—were

developed to deliver equivalent functionality,

ensuring an objective and consistent basis for

security comparison. Core features implemented

in both applications include client-side routing,

JWT-based authentication, RESTful API

integration, and user input handling. The

methodology proceeds through five sequential

phases (illustrated in Figure. 1): Application

Development (React and Vue), Threat Modeling,

Security Testing and Analysis, Mitigation Strategy

Formulation, Comparative Evaluation Each phase

is designed to systematically build, analyze, and

evaluate the security [25] posture of the two

frameworks.

Development of Sample Applications: Two

prototype SPAs were created:

Application 1 (React-based): Built with React

18, using React Router for navigation, Context

API for state management, and fetch API for

server communication.

Application 2 (Vue-based): Developed using

Vue 3, Vue Router, and Vuex for state

management, replicating the frontend logic and

API interactions of the React application. Both

applications implement, JWT-based

authentication flows, protected client-side routes,

User input forms with validation, API-driven

dashboard rendering, Integration with a simulated

Node.js/Express REST API backend Functional

and architectural parity was maintained to isolate

Miriyala Kiran Kumar et al 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1003

framework-specific security factors.

Figure 1 Workflow of the Research

Methodology

3.1. Threat Modeling Approach

A modified STRIDE framework, adapted for SPA-

specific client-side threats, was used to

systematically identify vulnerabilities: Spoofing:

Token forgery and identity manipulation.

Tampering: Modification of API responses via

browser developer tools. Repudiation: Lack of

effective frontend-side logging or audit trails.

Information Disclosure: Data leakage through

browser tools or insecure storage. Denial of

Service: Client-side resource exhaustion

impacting availability. Elevation of Privilege:

Unauthorized route or feature access due to

insufficient client-side controls. For each threat,

analysis considered the default framework security

posture, typical developer implementation

patterns, and the feasibility of real-world

exploitation. Threat modeling outputs include

threat catalogs and detailed client-server

interaction maps.

3.2. Security Testing Tools and Techniques

Static Analysis: ESLint (with security-specific

plugins) for detecting unsafe coding patterns.

SonarQube for identifying insecure API usage and

code vulnerabilities Snyk CLI for scanning

dependency vulnerabilities [26].

Dynamic Analysis: OWASP ZAP for runtime

security testing against XSS, insecure APIs, and

authentication flaws. Burp Suite for manual

analysis of route manipulation, API probing, and

token handling.

Manual Code Review: Inspection of potentially

unsafe functions like React’s

dangerouslySetInnerHTML and Vue’s v-html.

Examination of token storage approaches (e.g.,

localStorage, sessionStorage). Verification of

client-side route guard implementations and lazy

loading mechanisms.

Mitigation Strategy Design: Identified

vulnerabilities were addressed by applying

mitigation strategies derived from OWASP

guidelines, official framework best practices, and

security standards: Security headers configuration

(Content Security Policy, X-Frame-Options).

HTML sanitization using DOMPurify. Secure

token storage via HttpOnly cookies. Robust client-

side route guard implementation and optimized

lazy loadingAfter mitigation implementation, both

SPAs underwent retesting to validate the

effectiveness of the security measures. Iterative

adaptations were made based on retest results.

Comparative Evaluation Criteria: Security

postures of React and Vue applications were

compared along four dimensions: Vulnerability

Surface Area: Number of identified threats.

Exploit Complexity: Effort required to

successfully carry out an attack. Framework

Default Security: Built-in prevention and security

mechanisms. Clear depiction of the flow from

experimental setup to evaluation and limitations

[27]. Distinct color coding that aids in

understanding the stages.Inclusion of both static

and dynamic analysis, manual review, and

mitigation strategies. Comprehensive evaluation

criteria covering security and practical aspects

4. Results and Analysis

This section summarizes the results of threat

modeling and security testing of the React- and

Vue-based SPAs. Findings are categorized by

vulnerability type, framework behavior, and

mitigation feasibility, integrating both tool-based

and manual analyses.

4.1. Threat Identification Summary

The STRIDE model revealed common client-side

vulnerabilities in both frameworks Shown in Table

1 Threats Identified per Framework.

Client-Side Threats in SPAs: Modeling Security Risks 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1004

Table 1 Threats Identified per Framework
Threat Category React Vue.js

JWT Tampering 5 4

Route Guard Bypass 6 5

Information Disclosure 4 3

DOM-based XSS 7 6

Broken Access Control 5 5

Token Storage Risk 6 6

Content Injection 4 2

Total Vulnerabilities 37 31

The STRIDE threat model identified several

vulnerabilities across both frameworks. Tab. I

summarize the findings, with values indicating the

number of confirmed instances observed during

testing.

Figure 2 Total Vulnerabilities per

Framework

Figure. 2 presents the comparison of total

vulnerabilities identified in React and Vue.js.

React exhibited approximately 37 vulnerabilities,

whereas Vue.js showed about 31 vulnerabilities.

These results indicate that React had a broader

vulnerability surface than Vue.js in the security

evaluation.

Figure 3 Distribution of Threat

Categories(React)

Figure. 3 illustrates the distribution of

vulnerabilities identified in the React-based SPA.

DOM-based XSS (19%) and route guard bypass

(16%) represent the most critical issues, followed

by token storage risks (16%) and broken access

control (14%). JWT tampering, information

disclosure, and content injection each contribute

between 11–13%, highlighting that multiple

moderate risks collectively broaden the overall

attack surface.

Figure 4 Distribution of Threat

Categories(Vue)

Figure. 4 illustrates the distribution of

vulnerabilities in Vue.js across different threat

categories. The highest proportions are DOM-

based XSS and Token Storage Risk, each

accounting for 19%, followed closely by Route

Guard Bypass and Broken Access Control at 16%

each. Information Disclosure (10%) and Content

Injection (7%) were less frequent, indicating that

Vue.js is more exposed to cross-site scripting and

token handling weaknesses than to injection-based

threats.

Table 2 Dynamic Analysis Findings

Test Category React Vue.js

DOM-based XSS 7 6

API Exposure 5 5

Route Manipulation 6 5

Session Management 5 5

CSP Missing 4 4

Total Findings 27 25

Table. 2 summarizes the dynamic analysis

findings for React and Vue.js. React recorded a

slightly higher number of vulnerabilities (27)

compared to Vue.js (25), with notable differences

in DOM-based XSS (7 vs. 6) and route

manipulation (6 vs. 5). Overall, both frameworks

showed similar weaknesses in API exposure,

session management, and CSP misconfigurations,

indicating shared challenges in runtime security.

Miriyala Kiran Kumar et al 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1005

Figure 5 Dynamic Analysis Findings

Figure. 5 illustrates the chart illustrates the total

number of vulnerabilities identified through

dynamic analysis in React and Vue.js applications.

React recorded 27 findings, slightly higher than

Vue.js, which showed 25 findings. This outcome

indicates that both frameworks exhibit comparable

runtime security weaknesses, with React

presenting a marginally larger vulnerability

surface [28].

Comparative Framework Behavior: React

requires more manual sanitization and careful

handling of JSX, while Vue provides safer defaults

but is weakened by v-html or unsafe imports.

Neither framework enforces secure token storage

or CSP by default.

Mitigation and Re-Evaluation: Mitigation

included DOMPurify, HttpOnly cookies, CSP

headers, and stronger route guards. Post-

implementation, DOM-based XSS and

unauthorized access were eliminated, and token

theft risk reduced.

Conclusion and Future Work

The adoption of Single Page Applications (SPAs)

has greatly enhanced web performance,

interactivity, and user experience. However, the

shift to client-side rendering and routing

introduces new security challenges that traditional

threat models do not fully address. This research

conducted a comparative security analysis of

React and Vue.js SPAs using a structured

methodology combining threat modeling, static

and dynamic analysis, and manual inspection.

Both frameworks exhibited common

vulnerabilities such as DOM-based Cross-Site

Scripting (XSS), broken access control, and

insecure token storage. React’s

dangerouslySetInnerHTML was identified as a

particularly high-risk feature, while Vue.js, despite

safer defaults, remained vulnerable through usage

of v-html and unvetted third-party components.

Security depended heavily on developer practices

rather than framework defaults.Mitigation

strategies—enforcing Content Security Policy

(CSP), input sanitization with DOMPurify, secure

routing, and storing authentication tokens in

HttpOnly cookies—effectively reduced attack

surfaces. This study highlights the need for SPA-

specific security models, improved developer

guidance, and stronger framework defaults to

tackle client-side risks. The contribution includes

a validated SPA threat model and a framework-

agnostic methodology to assist developers and

security teams in building more secure client-side

applications.

Future Work

Future research can extend this study by including

additional SPA frameworks such as Angular,

Svelte, and Next.js for broader comparison.

Developing automated tools for SPA-oriented

threat modeling and using AI or machine learning

to detect client-side anomalies in real time are

promising directions. Further investigation into the

security of Progressive Web Apps (PWAs) and

mobile SPAs—especially regarding service

workers and offline storage—would also enhance

understanding. Finally, embedding security

scanning and threat modeling into CI/CD pipelines

will be essential for maintaining continuous and

scalable web application security.

References

[1]. Practical DevSecOps, Threat Modeling

Best Practices for 2025. 2025.

[2]. ISACA, Threat Modeling Revisited.

ISACA White Paper, 2025.

[3]. E. Hellquist, “Evaluating Security for

JavaScript-based Frontend Frameworks,”

M.S. thesis, Umeå Univ., Umeå, Sweden,

2024.

[4]. RadixWeb, React JS Security

Vulnerabilities: Identify and Fix Common

Threats. RadixWeb Report, 2024.

[5]. European Union Agency for Cybersecurity

(ENISA), ENISA Threat Landscape 2024.

ENISA, 2024.

[6]. MITRE, CWE Top 25 Most Dangerous

Software Weaknesses, 2024. MITRE

Corporation, 2024.

[7]. Snyk, State of JavaScript Security 2023.

Snyk Security Report, 2023.

Client-Side Threats in SPAs: Modeling Security Risks 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1006

[8]. Land2Cyber, “Comparative Study of SPA

Framework Vulnerabilities,”

Cybersecurity Review, 2023.

[9]. OWASP, SPA Security Best Practices.

OWASP AppSec Global Conf., 2023.

[10]. Veracode, State of Software Security 2022.

Veracode Security Report, 2022.

[11]. V. Gupta, A. Sharma, and R. Kumar,

“Hybrid Threat Modeling for SPAs,” Int. J.

Comput. Appl., vol. 184, no. 23, pp. 15–

22, 2022.

[12]. A. Kornienko, P. Müller, and S. Meier,

“Modern SPA Architecture and Security

Implications,” J. Web Eng., vol. 20, no. 4,

pp. 299–317, 2021.

[13]. M. Christakis, N. Polikarpova, and P.

Müller, “Integrating Static and Dynamic

Analysis for SPA Security,” IEEE Trans.

Softw. Eng., vol. 47, no. 6, pp. 1123–1138,

Jun. 2021.

[14]. OWASP, OWASP Top 10: 2021. OWASP

Foundation, 2021.

[15]. W3C, Subresource Integrity (SRI)

Specification. W3C Recommendation,

2016.

[16]. A. Cohen, “Browser Security Posture

Analysis: A Client-Side Security

Assessment Framework,” arXiv preprint

arXiv:2505.08050, 2025.

[17]. S. Wijckmans, “Client-Side Attack Recap

– Q1 2025,” c/side Threat Research Team

Blog, 2025.

[18]. TechRadar/c/side, “Client-Side Attack

Report Q2 2025 Highlights,” TechRadar

Pro Security News, Aug. 2025.

[19]. Security Industry Association (SIA), 2025

Security Megatrends. SIA Report, 2024.

[20]. V. Babaey and A. Ravindran, “GenXSS:

An AI-Driven Framework for Automated

Detection of XSS Attacks in WAFs,”

arXiv preprint arXiv:2504.08176, 2025.

[21]. B. S. Murthy, R. R. PBV, M. Prasad, P. K.

Sree, P. J. R. S. Raju and K. S. Kumar,

"Hybrid Security Framework and Machine

Learning Based Anomaly Detection for

Machine-to-Machine communications, "

2025 International Conference on

Computational Robotics, Testing and

Engineering Evaluation (ICCRTEE),

Virudhunagar, India, 2025, pp. 1-5, doi:

10.1109/ICCRTEE64519.2025.11053023.

[22]. Prasad, M. et al. (2024). Robust Strategies

for Authenticating and Exchanging Secret

Keys in Machine-to-Machine

Communications with Enhanced Security.

In: Bhateja, V., Lin, H., Simic, M., Attique

Khan, M., Garg, H. (eds) Cyber Security

and Intelligent Systems. ISDIA 2024.

Lecture Notes in Networks and Systems,

vol 1056. Springer, Singapore.

https://doi.org/10.1007/978-981-97-4892-

1_18

[23]. A. Rapaka, M. Prasad, R. R. Pbv, P. S.

Murty, and K. S. Pokkuluri, “Enhancing

Network Security: Leveraging Machine

Learning for Intrusion Detection,” Journal

of Electrical Systems, vol. 20, no. 2, pp.

1555-1562, 2024, doi: 10.52783/jes.1460.

[24]. Satyanarayana Murty, P.T., Prasad, M.,

Raja Rao, P.B.V., Kiran Sree, P., Ramesh

Babu, G., Phaneendra Varma, C. (2023). A

Hybrid Intelligent Cryptography

Algorithm for Distributed Big Data

Storage in Cloud Computing Security. In:

Morusupalli, R., Dandibhotla, T.S., Atluri,

V.V., Windridge, D., Lingras, P., Komati,

V.R. (eds) Multi-disciplinary Trends in

Artificial Intelligence. MIWAI 2023.

Lecture Notes in Computer Science(), vol

14078. Springer, Cham.

https://doi.org/10.1007/978-3-031-36402-

0_59

[25]. A. Mallikarjuna Reddy, K. Srinivas Reddy,

M. Prasad, and A. Obulesh. 2021. Internet

of things (IoT) security threats and

countermeasures. Netw. Secur. 5 (2021),

12–26.

[26]. Satti, S.K., Suganya Devi, K.,

Muppalaneni, N.B., Maddula, P. (2025).

Real-Time Surveillance System to Monitor

Vehicles and Pedestrians for Road Traffic

Management. In: Maryam, H., Malik,

M.M., Khan, I.U., Gupta, S.K. (eds) AI-

Driven Transportation Systems: Real-

Time Applications and Related

Technologies. Information Systems

Engineering and Management, vol 62.

Springer, Cham.

https://doi.org/10.1007/978-3-031-98349-

8_10

[27]. Satti, Satish Kumar, Prasad Maddula, and

NV Vishnumurthy Ravipati. "Unified

Miriyala Kiran Kumar et al 2025, Vol. 07, Issue 11 November

International Research Journal on Advanced Science Hub (IRJASH) 1007

approach for detecting traffic signs and

potholes on Indian roads." Journal of King

Saud University-Computer and

Information Sciences 34.10 (2022): 9745-

9756.

[28]. S. K. Satti, G. N. V. Rajareddy, P. Maddula

and N. V. Vishnumurthy Ravipati, "Image

Caption Generation using ResNET-50 and

LSTM," 2023 IEEE Silchar Subsection

Conference (SILCON), Silchar, India,

2023, pp. 1-6, doi:

10.1109/SILCON59133.2023.10404600.

