RESEARCH ARTICLE

an International Research Journal on Advanced Science Hub

E 2

=

h

RSP Science Hub

2582-4376

www.rspsciencehub.com
Vol. 07, Issue 11 November

W) Check for updates

http://dx.doi.org/10.47392/IRJASH.2025.110

Client-Side Threats in SPAs: Modeling Security Risks in Popular JavaScript

Framework

Miriyala Kiran Kumar?, Dr. Kopparthi Suresh?
PG Scholar, Bhimavaram Institute of Engineering and Technology, Pennada

2Professor and Principal, Bhimavaram Institute of Engineering and Technology, Pennada

Emails: kkm2404@gmail.com?, sureshkgrl@gmail.com?

Article history Abstract

Received: 17 September 2025 Single Page Applications (SPAs) have reshaped web development by

Accepted: 09 October 2025
Published: 25 November
2025

improving responsiveness and interactivity, but the shift of application logic
and data handling to the client side has introduced security challenges that
traditional server-centric models do not adequately address. This study

proposes and validates a threat model specifically designed for SPAs,

Keywords:
Client-side Security, React,
Vue.js, Single Page

focusing on two widely adopted JavaScript frameworks, React and Vue.js.
Two prototype applications with equivalent functionality were developed and
evaluated using a modified STRIDE methodology, combining static analysis

Applications (SPAs Threat 4,15 (ESLint, SonarQube, Snyk), dynamic testing tools (OWASP ZAP, Burp

Modeling, Cross-site
scripting, (XSS), Web
security assessment, JWT.

Suite), and manual inspection of client-side code and runtime behavior. The
analysis identified common vulnerabilities across both frameworks, including
DOM-based XSS, insecure token storage, broken route guards, and exposed

API endpoints. React showed higher risk when unsafe rendering practices
such as dangerously SetlnnerHTML were used, while Vue’s vulnerabilities
were linked to insecure use of v-html and un validated dynamic imports.
Mitigation strategies, including input sanitization, Http Only cookie-based
token storage, Content Security Policy (CSP), and strict route guards,
significantly reduced vulnerabilities. This work delivers a structured SPA-
specific threat model and reproducible methodology, providing developers
and security practitioners with actionable guidance for building more secure

client-side applications.

1. Introduction
Single Page Applications (SPAs) have
transformed modern web development by

Frameworks like React and Vue.js have become
the preferred tools for building these high-

delivering faster, more seamless user experiences
compared to traditional Multi-Page Applications
(MPAS). Instead of reloading entire pages, SPAS
load a single HTML document and dynamically
update content using JavaScript and AJAX.

OPEN ACCESS

performance, interactive web apps. However, this
shift to client-side rendering introduces new
security challenges [21]. SPAs rely heavily on
browser-based logic, client-side routing, and APIs
for crucial tasks such as authentication and data

1000

Miriyala Kiran Kumar et al

management. While these features improve
usability and efficiency, they also increase the
application’s attack surface. Common
vulnerabilities in SPAs include DOM-based
Cross-Site Scripting (XSS), token leakage,
exposure of API endpoints, and broken access
control due to inadequate route protection.
Traditional web security [22] models and testing
tools often fall short when applied to SPAs.
Methods like STRIDE may not fully address the
dynamic behavior and unique architecture of
modern JavaScript frameworks. Similarly,
security scanners like OWASP ZAP struggle to
effectively analyze SPA content and client-side
logic. This research addresses these challenges by
creating a client-side threat model tailored
specifically for SPAs, with a comparative focus on
React and Vuejs. It analyzes how these
frameworks’ design decisions, templating, and
data binding mechanisms influence security risks
[23]. Using practical testing and code analysis, this
study uncovers how SPAs handle or fail to handle
key vulnerabilities, professionals with a clear
threat model, a comparative framework analysis,
and actionable mitigation strategies. By doing so,
it bridges the gap between traditional threat
modeling and the complex security needs of
modern SPA architectures. Development and
validation of a client-side threat model tailored to
SPA architecture. Framework-specific
vulnerability assessment of React and Vue.js.Real-
world security testing using static analysis tools
(ESLint, SonarQube) and dynamic testing tools
(OWASP ZAP, Burp Suite). Implementation of
effective mitigation strategies for common client-
side security risks. Proposal of a reusable,
framework-agnostic methodology for frontend
security evaluation in JavaScript-based SPAs.

2. Literature Review

Single Page Applications (SPAS) represent a
significant evolution in web application
architecture. With client-side frameworks such as
React and Vue.js, modern applications perform
much of their logic on the frontend. This
architectural shift has introduced new client-side
security challenges that traditional threat models
and server-focused mitigation strategies fail to
fully address. This section reviews existing
literature on web application security, SPA-
specific vulnerabilities, framework-specific risks,

2025, Vol. 07, Issue 11 November

and threat modeling approaches relevant to this
study. Web security has traditionally concentrated
on server-side vulnerabilities such as SQL
Injection, Cross-Site Scripting (XSS), and
authentication flaws, as outlined in the OWASP
Top 10 [14]. However, the architectural transition
to Single Page Applications (SPASs) has shifted
much of the attack surface to the client side,
exposing new risks. Early studies highlighted how
XSS evolved into DOM-based variants driven by
JavaScript document modifications, making
detection harder with traditional methods [12],
[13]. The growing complexity of frontend-heavy
systems was further emphasized by Kornienko et
al. [12] and Christakis et al. [13], who showed that
static-only or server-focused threat models fail to
capture SPA-specific vulnerabilities. Framework-
level behaviors significantly affect security
posture. React’s JSX provides safe defaults but
becomes dangerous when developers use insecure
functions such as dangerouslySetinnerHTML [4].
Similarly, Vue.js escapes content by default, yet its
v-html directive and unsafe plugin integration
enable content injection [8]. Comparative studies
confirmed that both frameworks are highly
dependent on developer practices rather than
inherent safeguards [3], [8]. Case analyses by
RadixWeb [4] showed recurring React risks in
state handling, weak authentication flows, and
insecure dependencies, while Hellquist [3]
identified framework-level weaknesses tied to
misused libraries and poor sanitization. Industry
reports validate these risks. ENISA [5] and
Veracode [10] highlighted insecure client-side
routing, token mismanagement, and APl misuse as
recurring vulnerabilities in modern web
applications. MITRE’s CWE Top 25 [6]
underscored that critical weaknesses like improper
input handling and insufficient authentication are
directly exploitable in SPAs. Similarly, the Snyk
JavaScript Security Report [7] and OWASP
AppSec 2023 guidance [9] warned of insecure
token storage in localStorage, dependency-based
vulnerabilities, and poor Content Security Policy
(CSP) enforcement. Threat modeling approaches
have evolved accordingly. Microsoft’s STRIDE
model provided a foundation [14], but researchers
such as Gupta et al. [11] proposed hybrid SPA-
specific models incorporating Data Flow
Diagrams (DFDs), attack trees, and runtime

International Research Journal on Advanced Science Hub (IRJASH) 1001

Client-Side Threats in SPAs: Modeling Security Risks
analysis. Practical DevSecOps [1] and ISACA [2]
further recommended embedding threat modeling
into DevSecOps pipelines, ensuring risks are
continuously reassessed during agile development
cycles. OWASP [9] added SPA-specific risks like
API fuzzing, Broken Object Level Authorization
(BOLA), and insecure deserialization. Babaey and
Ravindran [20] extended this by proposing Al-
driven frameworks for detecting evolving cross-
site scripting (XSS) patterns in client-side
applications. Recent literature and industry
updates between 2024 and 2025 underscore an
escalating threat landscape. ENISA [5] highlighted
supply chain vulnerabilities within frontend
ecosystems, while the Security Industry
Association (SIA) [19] identified client-side attack
vectors as top security megatrends. Wijckmans
[17] and TechRadar/c/side [18] documented
quarterly attack reports showing a surge in DOM-
based XSS and token theft in production SPAs.
Cohen [16] provided a novel framework for
browser security posture analysis, demonstrating
the importance of runtime protections like CSP
and Subresource Integrity (SRI) [15]. Testing
methodologies align with this hybrid approach.
OWASP ZAP and Burp Suite remain essential
runtime analysis tools but often require headless
browsing to properly evaluate JavaScript-heavy
interfaces [10]. Static tools like ESLint,
SonarQube, and Snyk flag unsafe coding patterns
[7], while runtime defenses such as CSP and SRI
[15] offer added hardening layers. Christakis et al.
[13] argued that only composite approaches—
merging static, dynamic, and runtime analysis—
can holistically address SPA vulnerabilities.
Identified Gaps in Literature: Despite growing
recognition of SPA-specific risks, few studies
directly compare React and Vue.js under
controlled experimentation. Existing reports [1],
[2], [5]-{71, [19] stress the need for reusable threat
models tailored to SPAs that integrate with
DevSecOps workflows. Specific gaps include the
lack of systematic mappings between SPA
behaviors (e.g., token storage, route guards, and
dynamic imports) and known attack vectors. This
study builds upon these gaps by providing a
comparative, framework-specific threat model and
empirical evaluation of React and Vue.js.

3. Methodology

This chapter outlines the research methodology
used to analyze and model client-side security

2025, Vol. 07, Issue 11 November
threats in Single Page Applications (SPAS)
developed with two widely adopted JavaScript
frameworks: React and Vue.js. The approach
involves creating controlled test environments,
implementing comparable sample applications,
applying tailored threat modeling techniques,
selecting appropriate security assessment tools,
and establishing evaluation metrics for
vulnerability detection and mitigation. The
process, summarized in Fig. 1, follows a structured
workflow that begins with experimental setup and
progresses through application development,
threat modeling, security testing, mitigation, and
comparative evaluation. This methodology
provides a rigorous and reproducible framework
for the comparative security [24] analysis of SPA
architectures. Research Design: The study adopts
a comparative experimental design that integrates
qualitative threat modeling with quantitative
vulnerability assessment. Two SPAs—one built
with React and the other with Vue.js—were
developed to deliver equivalent functionality,
ensuring an objective and consistent basis for
security comparison. Core features implemented
in both applications include client-side routing,
JWT-based authentication, RESTful API
integration, and user input handling. The
methodology proceeds through five sequential
phases (illustrated in Figure. 1): Application
Development (React and Vue), Threat Modeling,
Security Testing and Analysis, Mitigation Strategy
Formulation, Comparative Evaluation Each phase
is designed to systematically build, analyze, and
evaluate the security [25] posture of the two
frameworks.

Development of Sample Applications: Two
prototype SPAs were created:

Application 1 (React-based): Built with React
18, using React Router for navigation, Context
API for state management, and fetch API for
server communication.

Application 2 (Vue-based): Developed using
Vue 3, Vue Router, and Vuex for state
management, replicating the frontend logic and
API interactions of the React application. Both
applications implement, JWT-based
authentication flows, protected client-side routes,
User input forms with validation, API-driven
dashboard rendering, Integration with a simulated
Node.js/Express REST API backend Functional
and architectural parity was maintained to isolate

International Research Journal on Advanced Science Hub (IRJASH) 1002

Miriyala Kiran Kumar et al
framework-specific security factors.

[Research Design Comparative Experimental Setup

1l

[Sample Application Development React SPA |

Ll

Threat Modeling (Modified STRIDE for
JL

(Security Testing & Analysig, Static (ESLmt, }

SonarQube, Snyk). Dynamic (OWASP ZAP,
Buip Suite), Manual Code Review

JL

Mitigation Strategy Design (CSP, DOMPurify.
Secure Token Handling, Route Guardg)

I

‘ Comparative Evaluation, Vulnerability Surface, Explost ‘

Complexity, Framework Defaults, Mitigation Difficulty

[1

-

[Linmutations & Scope]

Figure 1 Workflow of the Research
Methodology

3.1. Threat Modeling Approach
A modified STRIDE framework, adapted for SPA-
specific client-side threats, was used to
systematically identify vulnerabilities: Spoofing:
Token forgery and identity manipulation.
Tampering: Modification of API responses via
browser developer tools. Repudiation: Lack of
effective frontend-side logging or audit trails.
Information Disclosure: Data leakage through
browser tools or insecure storage. Denial of
Service: Client-side resource exhaustion
impacting availability. Elevation of Privilege:
Unauthorized route or feature access due to
insufficient client-side controls. For each threat,
analysis considered the default framework security
posture, typical developer implementation
patterns, and the feasibility of real-world
exploitation. Threat modeling outputs include
threat catalogs and detailed client-server
interaction maps.

3.2. Security Testing Tools and Techniques
Static Analysis: ESLint (with security-specific
plugins) for detecting unsafe coding patterns.
SonarQube for identifying insecure APl usage and
code vulnerabilities Snyk CLI for scanning
dependency vulnerabilities [26].

2025, Vol. 07, Issue 11 November

Dynamic Analysis: OWASP ZAP for runtime
security testing against XSS, insecure APIs, and
authentication flaws. Burp Suite for manual
analysis of route manipulation, API probing, and
token handling.
Manual Code Review: Inspection of potentially
unsafe functions like React’s
dangerouslySetinnerHTML and Vue’s v-html.
Examination of token storage approaches (e.g.,
localStorage, sessionStorage). Verification of
client-side route guard implementations and lazy
loading mechanisms.
Mitigation Strategy Design: Identified
vulnerabilities were addressed by applying
mitigation strategies derived from OWASP
guidelines, official framework best practices, and
security standards: Security headers configuration
(Content Security Policy, X-Frame-Options).
HTML sanitization using DOMPurify. Secure
token storage via HttpOnly cookies. Robust client-
side route guard implementation and optimized
lazy loadingAfter mitigation implementation, both
SPAs underwent retesting to validate the
effectiveness of the security measures. lterative
adaptations were made based on retest results.
Comparative Evaluation Criteria: Security
postures of React and Vue applications were
compared along four dimensions: Vulnerability
Surface Area: Number of identified threats.
Exploit Complexity: Effort required to
successfully carry out an attack. Framework
Default Security: Built-in prevention and security
mechanisms. Clear depiction of the flow from
experimental setup to evaluation and limitations
[27]. Distinct color coding that aids in
understanding the stages.Inclusion of both static
and dynamic analysis, manual review, and
mitigation strategies. Comprehensive evaluation
criteria covering security and practical aspects
4. Results and Analysis
This section summarizes the results of threat
modeling and security testing of the React- and
Vue-based SPAs. Findings are categorized by
vulnerability type, framework behavior, and
mitigation feasibility, integrating both tool-based
and manual analyses.

4.1. Threat Identification Summary
The STRIDE model revealed common client-side
vulnerabilities in both frameworks Shown in Table
1 Threats Identified per Framework.

International Research Journal on Advanced Science Hub (IRJASH) 1003

Client-Side Threats in SPAs: Modeling Security Risks
Table 1 Threats Identified per Framework
Threat Category React | Vue.Js

JWT Tampering 5 4
Route Guard Bypass

Information Disclosure
DOM-based XSS

Broken Access Control

Token Storage Risk
Content Injection
Total Vulnerabilities

OO RO
N O OO Ww| ol

w
~
w
H

The STRIDE threat model identified several
vulnerabilities across both frameworks. Tab. |
summarize the findings, with values indicating the
number of confirmed instances observed during
testing.

Total Vulnerabilities

40 > a1
30
20
10
0
React Vue.js

W Total Vulnerabilities
Figure 2 Total Vulnerabilities per
Framework

Figure. 2 presents the comparison of total
vulnerabilities identified in React and Vue.js.
React exhibited approximately 37 vulnerabilities,
whereas Vue.js showed about 31 vulnerabilities.
These results indicate that React had a broader
vulnerability surface than Vue.js in the security
evaluation.

Re act ®IWT Tampering
11%

= Content Injection

Figure 3 Distribution of Threat
Categories(React)

H Route Guard Bypass

B Information Disclosure
B DOM-based XSS
B Broken Access Control

11% B Token Storage Risk

Figure. 3 illustrates the distribution of
vulnerabilities identified in the React-based SPA.
DOM-based XSS (19%) and route guard bypass

2025, Vol. 07, Issue 11 November
(16%) represent the most critical issues, followed
by token storage risks (16%) and broken access
control (14%). JWT tampering, information
disclosure, and content injection each contribute
between 11-13%, highlighting that multiple
moderate risks collectively broaden the overall
attack surface.

Vue ,j S B JWT Tampering
7% _\

13% B Route Guard Bypass

® Information Disclosure

19% ® DOM-based XSS

m Broken Access Control

10% m Token Storage Risk
Content Injection

Figure 4 Distribution of Threat
Categories(Vue)

Figure. 4 illustrates the distribution of
vulnerabilities in Vue.js across different threat
categories. The highest proportions are DOM-
based XSS and Token Storage Risk, each
accounting for 19%, followed closely by Route
Guard Bypass and Broken Access Control at 16%
each. Information Disclosure (10%) and Content
Injection (7%) were less frequent, indicating that
Vue.js is more exposed to cross-site scripting and
token handling weaknesses than to injection-based
threats.

Table 2 Dynamic Analysis Findings

Test Category React | Vue.js
DOM-based XSS 7 6
API| Exposure 3) 5
Route Manipulation 6 5
Session Management 5 5
CSP Missing 4 4
Total Findings 27 25

Table. 2 summarizes the dynamic analysis
findings for React and Vue.js. React recorded a
slightly higher number of vulnerabilities (27)
compared to Vue.js (25), with notable differences
in DOM-based XSS (7 vs. 6) and route
manipulation (6 vs. 5). Overall, both frameworks
showed similar weaknesses in APl exposure,
session management, and CSP misconfigurations,
indicating shared challenges in runtime security.

International Research Journal on Advanced Science Hub (IRJASH) 1004

Miriyala Kiran Kumar et al

50 4 Total Findings

40 -

30 A

20 -

10 -

0 : .
React Vue.is

Figure 5 Dynamic Analysis Findings

Figure. 5 illustrates the chart illustrates the total
number of wvulnerabilities identified through
dynamic analysis in React and Vue.js applications.
React recorded 27 findings, slightly higher than
Vue.js, which showed 25 findings. This outcome
indicates that both frameworks exhibit comparable
runtime security weaknesses, with React
presenting a marginally larger vulnerability
surface [28].

Comparative Framework Behavior: React
requires more manual sanitization and careful
handling of JSX, while Vue provides safer defaults
but is weakened by v-html or unsafe imports.
Neither framework enforces secure token storage
or CSP by default.

Mitigation and Re-Evaluation: Mitigation
included DOMPurify, HttpOnly cookies, CSP
headers, and stronger route guards. Post-
implementation, DOM-based XSS and
unauthorized access were eliminated, and token
theft risk reduced.

Conclusion and Future Work

The adoption of Single Page Applications (SPAS)
has greatly enhanced web performance,
interactivity, and user experience. However, the
shift to client-side rendering and routing
introduces new security challenges that traditional
threat models do not fully address. This research
conducted a comparative security analysis of
React and Vue.js SPAs using a structured
methodology combining threat modeling, static
and dynamic analysis, and manual inspection.
Both frameworks exhibited common
vulnerabilities such as DOM-based Cross-Site
Scripting (XSS), broken access control, and
insecure token storage. React’s
dangerouslySetinnerHTML was identified as a
particularly high-risk feature, while Vue.js, despite
safer defaults, remained vulnerable through usage
of v-html and unvetted third-party components.

2025, Vol. 07, Issue 11 November

Security depended heavily on developer practices
rather than framework defaults.Mitigation
strategies—enforcing Content Security Policy
(CSP), input sanitization with DOMPurify, secure
routing, and storing authentication tokens in
HttpOnly cookies—effectively reduced attack
surfaces. This study highlights the need for SPA-
specific security models, improved developer
guidance, and stronger framework defaults to
tackle client-side risks. The contribution includes
a validated SPA threat model and a framework-
agnostic methodology to assist developers and
security teams in building more secure client-side
applications.

Future Work

Future research can extend this study by including
additional SPA frameworks such as Angular,
Svelte, and Next.js for broader comparison.
Developing automated tools for SPA-oriented
threat modeling and using Al or machine learning
to detect client-side anomalies in real time are
promising directions. Further investigation into the
security of Progressive Web Apps (PWAs) and
mobile SPAs—especially regarding service
workers and offline storage—would also enhance
understanding. Finally, embedding security
scanning and threat modeling into CI/CD pipelines
will be essential for maintaining continuous and
scalable web application security.

References

[1]. Practical DevSecOps, Threat Modeling
Best Practices for 2025. 2025.

[2]. ISACA, Threat Modeling Reuvisited.
ISACA White Paper, 2025.

[3]. E. Hellquist, “Evaluating Security for
JavaScript-based Frontend Frameworks,”
M.S. thesis, Umea Univ., Umed, Sweden,
2024.

[4]. RadixWeb, React JS Security
Vulnerabilities: Identify and Fix Common
Threats. RadixWeb Report, 2024.

[5]. European Union Agency for Cybersecurity
(ENISA), ENISA Threat Landscape 2024.
ENISA, 2024.

[6]. MITRE, CWE Top 25 Most Dangerous
Software Weaknesses, 2024. MITRE
Corporation, 2024.

[7]. Snyk, State of JavaScript Security 2023.
Snyk Security Report, 2023.

International Research Journal on Advanced Science Hub (IRJASH) 1005

Client-Side Threats in SPAs: Modeling Security Risks

[8].

[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

International Research Journal on Advanced Science Hub (IRJASH)

Land2Cyber, “Comparative Study of SPA
Framework Vulnerabilities,”
Cybersecurity Review, 2023.

OWASP, SPA Security Best Practices.
OWASP AppSec Global Conf., 2023.
Veracode, State of Software Security 2022.
Veracode Security Report, 2022.

V. Gupta, A. Sharma, and R. Kumar,
“Hybrid Threat Modeling for SPAs,” Int. J.
Comput. Appl., vol. 184, no. 23, pp. 15—
22, 2022.

A. Kornienko, P. Miiller, and S. Meier,
“Modern SPA Architecture and Security
Implications,” J. Web Eng., vol. 20, no. 4,
pp. 299-317, 2021.

M. Christakis, N. Polikarpova, and P.
Miiller, “Integrating Static and Dynamic
Analysis for SPA Security,” IEEE Trans.
Softw. Eng., vol. 47, no. 6, pp. 1123-1138,
Jun. 2021.

OWASP, OWASP Top 10: 2021. OWASP
Foundation, 2021.

W3C, Subresource Integrity (SRI)
Specification. W3C Recommendation,
2016.

A. Cohen, “Browser Security Posture
Analysis: A Client-Side Security
Assessment Framework,” arXiv preprint
arXiv:2505.08050, 2025.

S. Wijckmans, “Client-Side Attack Recap
— Q1 2025,” c¢/side Threat Research Team
Blog, 2025.

TechRadar/c/side, “Client-Side Attack
Report Q2 2025 Highlights,” TechRadar
Pro Security News, Aug. 2025.

Security Industry Association (SIA), 2025
Security Megatrends. SIA Report, 2024.
V. Babaey and A. Ravindran, “GenXSS:
An Al-Driven Framework for Automated
Detection of XSS Attacks in WAFSs,”
arXiv preprint arXiv:2504.08176, 2025.

B. S. Murthy, R. R. PBV, M. Prasad, P. K.
Sree, P. J. R. S. Raju and K. S. Kumar,
"Hybrid Security Framework and Machine
Learning Based Anomaly Detection for
Machine-to-Machine communications, "
2025 International Conference on
Computational Robotics, Testing and
Engineering Evaluation (ICCRTEE),
Virudhunagar, India, 2025, pp. 1-5, doi:
10.1109/ICCRTEE64519.2025.11053023.

[22].

[23].

[24].

[25].

[26].

[27].

2025, Vol. 07, Issue 11 November
Prasad, M. et al. (2024). Robust Strategies
for Authenticating and Exchanging Secret
Keys in Machine-to-Machine
Communications with Enhanced Security.
In: Bhateja, V., Lin, H., Simic, M., Attique
Khan, M., Garg, H. (eds) Cyber Security
and Intelligent Systems. ISDIA 2024.
Lecture Notes in Networks and Systems,
vol 1056. Springer, Singapore.
https://doi.org/10.1007/978-981-97-4892-
118
A. Rapaka, M. Prasad, R. R. Pbv, P. S.
Murty, and K. S. Pokkuluri, “Enhancing
Network Security: Leveraging Machine
Learning for Intrusion Detection,” Journal
of Electrical Systems, vol. 20, no. 2, pp.
1555-1562, 2024, doi: 10.52783/jes.1460.
Satyanarayana Murty, P.T., Prasad, M.,
Raja Rao, P.B.V., Kiran Sree, P., Ramesh
Babu, G., Phaneendra Varma, C. (2023). A
Hybrid Intelligent Cryptography
Algorithm for Distributed Big Data
Storage in Cloud Computing Security. In:
Morusupalli, R., Dandibhotla, T.S., Atluri,
V.V., Windridge, D., Lingras, P., Komati,
V.R. (eds) Multi-disciplinary Trends in

Artificial Intelligence. MIWAI 2023.
Lecture Notes in Computer Science(), vol
14078. Springer, Cham.

https://doi.org/10.1007/978-3-031-36402-
059

A. Mallikarjuna Reddy, K. Srinivas Reddy,
M. Prasad, and A. Obulesh. 2021. Internet
of things (loT) security threats and
countermeasures. Netw. Secur. 5 (2021),
12-26.

Satti, S.K.,, Suganya Devi, K,
Muppalaneni, N.B., Maddula, P. (2025).
Real-Time Surveillance System to Monitor
Vehicles and Pedestrians for Road Traffic
Management. In: Maryam, H., Malik,
M.M., Khan, LLU., Gupta, S.K. (eds) Al-

Driven Transportation Systems: Real-
Time Applications and Related
Technologies. Information ~ Systems

Engineering and Management, vol 62.
Springer, Cham.
https://doi.org/10.1007/978-3-031-98349-
8 10

Satti, Satish Kumar, Prasad Maddula, and
NV Vishnumurthy Ravipati. "Unified

1006

Miriyala Kiran Kumar et al

[28].

International Research Journal on Advanced Science Hub (IRJASH)

approach for detecting traffic signs and
potholes on Indian roads." Journal of King
Saud University-Computer and
Information Sciences 34.10 (2022): 9745-
9756.

S. K. Satti, G. N. V. Rajareddy, P. Maddula
and N. V. Vishnumurthy Ravipati, "Image
Caption Generation using ResNET-50 and
LSTM," 2023 IEEE Silchar Subsection
Conference (SILCON), Silchar, India,
2023, pp. 1-6, doi:
10.1109/SILCON59133.2023.10404600.

2025, Vol. 07, Issue 11 November

1007

